These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 11222779)
1. Identification of partial loss of function p53 gene mutations utilizing a yeast-based functional assay. Kovvali GK; Mehta B; Epstein CB; Lutzker SG Nucleic Acids Res; 2001 Mar; 29(5):E28. PubMed ID: 11222779 [TBL] [Abstract][Full Text] [Related]
2. Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants. Inga A; Resnick MA Oncogene; 2001 Jun; 20(26):3409-19. PubMed ID: 11423991 [TBL] [Abstract][Full Text] [Related]
3. Mammalian p53 can function as a transcription factor in yeast. Schärer E; Iggo R Nucleic Acids Res; 1992 Apr; 20(7):1539-45. PubMed ID: 1579447 [TBL] [Abstract][Full Text] [Related]
5. p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Campomenosi P; Monti P; Aprile A; Abbondandolo A; Frebourg T; Gold B; Crook T; Inga A; Resnick MA; Iggo R; Fronza G Oncogene; 2001 Jun; 20(27):3573-9. PubMed ID: 11429705 [TBL] [Abstract][Full Text] [Related]
6. p53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Inga A; Monti P; Fronza G; Darden T; Resnick MA Oncogene; 2001 Jan; 20(4):501-13. PubMed ID: 11313981 [TBL] [Abstract][Full Text] [Related]
7. Human tumor-derived p53 proteins exhibit binding site selectivity and temperature sensitivity for transactivation in a yeast-based assay. Di Como CJ; Prives C Oncogene; 1998 May; 16(19):2527-39. PubMed ID: 9627118 [TBL] [Abstract][Full Text] [Related]
8. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Inga A; Storici F; Darden TA; Resnick MA Mol Cell Biol; 2002 Dec; 22(24):8612-25. PubMed ID: 12446780 [TBL] [Abstract][Full Text] [Related]
9. Screening patients for heterozygous p53 mutations using a functional assay in yeast. Ishioka C; Frebourg T; Yan YX; Vidal M; Friend SH; Schmidt S; Iggo R Nat Genet; 1993 Oct; 5(2):124-9. PubMed ID: 8252037 [TBL] [Abstract][Full Text] [Related]
10. p53 functional loss in a colon cancer cell line with two missense mutations (218leu and 248trp) on separate alleles. Rand A; Glenn KS; Alvares CP; White MB; Thibodeau SM; Karnes WE Cancer Lett; 1996 Jan; 98(2):183-91. PubMed ID: 8556707 [TBL] [Abstract][Full Text] [Related]
11. Selection of cell death-deficient p53 mutants in Saccharomyces cerevisiae. Yacoubi-Hadj Amor I; Smaoui K; Belguith H; Djemal L; Dardouri M; Mokdad-Gargouri R; Gargouri A Yeast; 2009 Aug; 26(8):441-50. PubMed ID: 19579214 [TBL] [Abstract][Full Text] [Related]
12. Sequence-specific transcriptional activation is essential for growth suppression by p53. Pietenpol JA; Tokino T; Thiagalingam S; el-Deiry WS; Kinzler KW; Vogelstein B Proc Natl Acad Sci U S A; 1994 Mar; 91(6):1998-2002. PubMed ID: 8134338 [TBL] [Abstract][Full Text] [Related]
13. Mammalian metal response element-binding transcription factor-1 functions as a zinc sensor in yeast, but not as a sensor of cadmium or oxidative stress. Daniels PJ; Bittel D; Smirnova IV; Winge DR; Andrews GK Nucleic Acids Res; 2002 Jul; 30(14):3130-40. PubMed ID: 12136095 [TBL] [Abstract][Full Text] [Related]
14. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Kato S; Han SY; Liu W; Otsuka K; Shibata H; Kanamaru R; Ishioka C Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8424-9. PubMed ID: 12826609 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional properties of feline p53 and its tumour-associated mutants: a yeast-based approach. Cardellino U; Ciribilli Y; Andreotti V; Modesto P; Menichini P; Fronza G; Pellegrino C; Inga A Mutagenesis; 2007 Nov; 22(6):417-23. PubMed ID: 17947339 [TBL] [Abstract][Full Text] [Related]
16. Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Iwabuchi K; Li B; Bartel P; Fields S Oncogene; 1993 Jun; 8(6):1693-6. PubMed ID: 8502489 [TBL] [Abstract][Full Text] [Related]
17. Novel simplified yeast-based assays of regulators of p53-MDMX interaction and p53 transcriptional activity. Leão M; Gomes S; Soares J; Bessa C; Maciel C; Ciribilli Y; Pereira C; Inga A; Saraiva L FEBS J; 2013 Dec; 280(24):6498-507. PubMed ID: 24119020 [TBL] [Abstract][Full Text] [Related]
18. Reporter gene regulation in Saccharomyces cerevisiae by the human p53 tumor suppressor protein. Bitter GA; Schaeffer TN; Ellison AR J Mol Microbiol Biotechnol; 2002 Nov; 4(6):539-50. PubMed ID: 12432954 [TBL] [Abstract][Full Text] [Related]
19. A promoter function of the CCCGGG Sma I recognition sequence and its specific role in determining p53 status and identifying DNA damaging agents. Yang AL; Festing MF Biochem Biophys Res Commun; 2001 Feb; 281(2):506-10. PubMed ID: 11181076 [TBL] [Abstract][Full Text] [Related]
20. A split-ubiquitin-based assay detects the influence of mutations on the conformational stability of the p53 DNA binding domain in vivo. Johnsson N FEBS Lett; 2002 Nov; 531(2):259-64. PubMed ID: 12417323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]