BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 11222863)

  • 21. Breadth of tuning and taste coding in mammalian taste buds.
    Tomchik SM; Berg S; Kim JW; Chaudhari N; Roper SD
    J Neurosci; 2007 Oct; 27(40):10840-8. PubMed ID: 17913917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural representation of bitter taste in the nucleus of the solitary tract.
    Lemon CH; Smith DV
    J Neurophysiol; 2005 Dec; 94(6):3719-29. PubMed ID: 16107527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diverse bitter stimuli elicit highly similar patterns of Fos-like immunoreactivity in the nucleus of the solitary tract.
    Chan CY; Yoo JE; Travers SP
    Chem Senses; 2004 Sep; 29(7):573-81. PubMed ID: 15337683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bitter Taste Responses of Gustducin-positive Taste Cells in Mouse Fungiform and Circumvallate Papillae.
    Yoshida R; Takai S; Sanematsu K; Margolskee RF; Shigemura N; Ninomiya Y
    Neuroscience; 2018 Jan; 369():29-39. PubMed ID: 29113930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurobiology. A discriminating taste for bitter.
    Brown K
    Science; 2001 Feb; 291(5508):1465-6. PubMed ID: 11234060
    [No Abstract]   [Full Text] [Related]  

  • 26. Neuroblastoma cell as a model for a taste cell: mechanism of depolarization in response to various bitter substances.
    Kumazawa T; Kashiwayanagi M; Kurihara K
    Brain Res; 1985 Apr; 333(1):27-33. PubMed ID: 3995288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tastants evoke cAMP signal in taste buds that is independent of calcium signaling.
    Trubey KR; Culpepper S; Maruyama Y; Kinnamon SC; Chaudhari N
    Am J Physiol Cell Physiol; 2006 Aug; 291(2):C237-44. PubMed ID: 16510847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discrimination of taste qualities among mouse fungiform taste bud cells.
    Yoshida R; Miyauchi A; Yasuo T; Jyotaki M; Murata Y; Yasumatsu K; Shigemura N; Yanagawa Y; Obata K; Ueno H; Margolskee RF; Ninomiya Y
    J Physiol; 2009 Sep; 587(Pt 18):4425-39. PubMed ID: 19622604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli.
    Dutta Banik D; Benfey ED; Martin LE; Kay KE; Loney GC; Nelson AR; Ahart ZC; Kemp BT; Kemp BR; Torregrossa AM; Medler KF
    PLoS Genet; 2020 Aug; 16(8):e1008925. PubMed ID: 32790785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partial rescue of taste responses of alpha-gustducin null mice by transgenic expression of alpha-transducin.
    He W; Danilova V; Zou S; Hellekant G; Max M; Margolskee RF; Damak S
    Chem Senses; 2002 Oct; 27(8):719-27. PubMed ID: 12379596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of action of some bitter-tasting compounds on frog taste cells.
    Akaike N; Sato M
    Jpn J Physiol; 1976; 26(1):29-40. PubMed ID: 8659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sweet and bitter tastants specific detection by the taste cell-based sensor.
    Hui GH; Mi SS; Deng SP
    Biosens Bioelectron; 2012 May; 35(1):429-438. PubMed ID: 22424755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidation of mammalian bitter taste.
    Meyerhof W
    Rev Physiol Biochem Pharmacol; 2005; 154():37-72. PubMed ID: 16032395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve.
    Hanamori T; Miller IJ; Smith DV
    J Neurophysiol; 1988 Aug; 60(2):478-98. PubMed ID: 3171639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural responses to bitter compounds in rats.
    Dahl M; Erickson RP; Simon SA
    Brain Res; 1997 May; 756(1-2):22-34. PubMed ID: 9187310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro.
    Gulbransen BD; Clapp TR; Finger TE; Kinnamon SC
    J Neurophysiol; 2008 Jun; 99(6):2929-37. PubMed ID: 18417634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increase in inositol 1,4,5-triphosphate levels of the fungiform papilla in response to saccharin and bitter substances in mice.
    Nakashima K; Ninomiya Y
    Cell Physiol Biochem; 1998; 8(4):224-30. PubMed ID: 9694349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.
    Takai S; Yasumatsu K; Inoue M; Iwata S; Yoshida R; Shigemura N; Yanagawa Y; Drucker DJ; Margolskee RF; Ninomiya Y
    FASEB J; 2015 Jun; 29(6):2268-80. PubMed ID: 25678625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells.
    Behrens M; Foerster S; Staehler F; Raguse JD; Meyerhof W
    J Neurosci; 2007 Nov; 27(46):12630-40. PubMed ID: 18003842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. "Tripartite Synapses" in Taste Buds: A Role for Type I Glial-like Taste Cells.
    Rodriguez YA; Roebber JK; Dvoryanchikov G; Makhoul V; Roper SD; Chaudhari N
    J Neurosci; 2021 Dec; 41(48):9860-9871. PubMed ID: 34697094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.