BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11222923)

  • 1. Protein thiol oxidation by haloperidol results in inhibition of mitochondrial complex I in brain regions: comparison with atypical antipsychotics.
    Balijepalli S; Kenchappa RS; Boyd MR; Ravindranath V
    Neurochem Int; 2001 Apr; 38(5):425-35. PubMed ID: 11222923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation.
    Balijepalli S; Boyd MR; Ravindranath V
    Neuropharmacology; 1999 Apr; 38(4):567-77. PubMed ID: 10221760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced complex I inhibition is reversed by disulfide reductant, dithiothreitol in mouse brain.
    Annepu J; Ravindranath V
    Neurosci Lett; 2000 Aug; 289(3):209-12. PubMed ID: 10961666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroleptic-induced mitochondrial enzyme alterations in the rat brain.
    Prince JA; Yassin MS; Oreland L
    J Pharmacol Exp Ther; 1997 Jan; 280(1):261-7. PubMed ID: 8996205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroleptic medications inhibit complex I of the electron transport chain.
    Burkhardt C; Kelly JP; Lim YH; Filley CM; Parker WD
    Ann Neurol; 1993 May; 33(5):512-7. PubMed ID: 8098932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the antipsychotic drug mosapramine on the expression of Fos protein in the rat brain: comparison with haloperidol, clozapine and risperidone.
    Fujimura M; Hashimoto K; Yamagami K
    Life Sci; 2000 Oct; 67(23):2865-72. PubMed ID: 11106001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro and in vivo receptor binding and effects on monoamine turnover in rat brain regions of the novel antipsychotics risperidone and ocaperidone.
    Leysen JE; Janssen PM; Gommeren W; Wynants J; Pauwels PJ; Janssen PA
    Mol Pharmacol; 1992 Mar; 41(3):494-508. PubMed ID: 1372084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol oxidation and loss of mitochondrial complex I precede excitatory amino acid-mediated neurodegeneration.
    Sriram K; Shankar SK; Boyd MR; Ravindranath V
    J Neurosci; 1998 Dec; 18(24):10287-96. PubMed ID: 9852566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroleptic treatment effect on mitochondrial electron transport chain: peripheral blood mononuclear cells analysis in psychotic patients.
    Casademont J; Garrabou G; Miró O; López S; Pons A; Bernardo M; Cardellach F
    J Clin Psychopharmacol; 2007 Jun; 27(3):284-8. PubMed ID: 17502776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of thiol modification on brain mitochondrial complex I activity.
    Balijepalli S; Annepu J; Boyd MR; Ravindranath V
    Neurosci Lett; 1999 Sep; 272(3):203-6. PubMed ID: 10505616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amisulpride the 'atypical' atypical antipsychotic--comparison to haloperidol, risperidone and clozapine.
    Natesan S; Reckless GE; Barlow KB; Nobrega JN; Kapur S
    Schizophr Res; 2008 Oct; 105(1-3):224-35. PubMed ID: 18710798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A study on the pharmacological properties of atypical antipsychotic drugs: in vivo dopamine and serotonin receptor occupancy by atypical antipsychotic drugs in the rat brain].
    Matsubara R
    Hokkaido Igaku Zasshi; 1993 Jul; 68(4):570-82. PubMed ID: 7687976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic treatment with typical and atypical antipsychotics increases the AMPA-preferring form of AMPA receptor in rat brain.
    McCoy L; Cox C; Richfield EK
    Eur J Pharmacol; 1996 Dec; 318(1):41-5. PubMed ID: 9007511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of antipsychotics on succinate dehydrogenase and cytochrome oxidase activities in rat brain.
    Streck EL; Rezin GT; Barbosa LM; Assis LC; Grandi E; Quevedo J
    Naunyn Schmiedebergs Arch Pharmacol; 2007 Oct; 376(1-2):127-33. PubMed ID: 17673979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting effects of chronic clozapine, Seroquel(TM) (ICI 204,636) and haloperidol administration of deltaFosB-like immunoreactivity in the rodent forebrain.
    Vahid-Ansari F; Nakabeppu Y; Robertson GS
    Eur J Neurosci; 1996 May; 8(5):927-36. PubMed ID: 8743740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress and thiol modification induced by chronic administration of haloperidol.
    Shivakumar BR; Ravindranath V
    J Pharmacol Exp Ther; 1993 Jun; 265(3):1137-41. PubMed ID: 8509999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine.
    Robertson GS; Fibiger HC
    Neuroscience; 1992; 46(2):315-28. PubMed ID: 1347406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential region-specific regulation of central alpha 1-adrenoceptor binding following chronic haloperidol and clozapine administration in the rat.
    Cahir M; Mawhinney T; King DJ
    Psychopharmacology (Berl); 2004 Mar; 172(2):196-201. PubMed ID: 14534772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic administration of haloperidol and clozapine induces differential effects on the expression of Arc and c-Fos in rat brain.
    Collins CM; Wood MD; Elliott JM
    J Psychopharmacol; 2014 Oct; 28(10):947-54. PubMed ID: 24989643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of haloperidol and risperidone on neurotensin levels in brain regions and neurotensin efflux in the ventral striatum of the rat.
    Gruber SH; Nomikos GG; Mathé AA
    Neuropsychopharmacology; 2002 May; 26(5):595-604. PubMed ID: 11927184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.