These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 11223150)
1. A general algorithm for optimal sampling schedule design in nuclear medicine imaging. Li X; Feng D; Wong K Comput Methods Programs Biomed; 2001 Apr; 65(1):45-59. PubMed ID: 11223150 [TBL] [Abstract][Full Text] [Related]
2. GLLS for optimally sampled continuous dynamic system modeling: theory and algorithm. Feng D; Ho D; Lau KK; Siu WC Comput Methods Programs Biomed; 1999 Apr; 59(1):31-43. PubMed ID: 10215175 [TBL] [Abstract][Full Text] [Related]
3. Generalized linear least squares algorithms for modeling glucose metabolism in the human brain with corrections for vascular effects. Cai W; Feng D; Fulton R; Siu WC Comput Methods Programs Biomed; 2002 Apr; 68(1):1-14. PubMed ID: 11886698 [TBL] [Abstract][Full Text] [Related]
4. Optimal image sampling schedule for both image-derived input and output functions in PET cardiac studies. Li X; Feng D; Chen K IEEE Trans Med Imaging; 2000 Mar; 19(3):233-42. PubMed ID: 10875707 [TBL] [Abstract][Full Text] [Related]
5. A computer simulation study on the input function sampling schedules in tracer kinetic modeling with positron emission tomography (PET). Feng D; Wang X; Yan H Comput Methods Programs Biomed; 1994 Nov; 45(3):175-86. PubMed ID: 7705075 [TBL] [Abstract][Full Text] [Related]
6. Optimal image sampling schedule: a new effective way to reduce dynamic image storage space and functional image processing time. Li X; Feng D; Chen K IEEE Trans Med Imaging; 1996; 15(5):710-9. PubMed ID: 18215952 [TBL] [Abstract][Full Text] [Related]
7. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Feng D; Huang SC; Wang X Int J Biomed Comput; 1993 Mar; 32(2):95-110. PubMed ID: 8449593 [TBL] [Abstract][Full Text] [Related]
8. A computer simulation study on the effects of input function measurement noise in tracer kinetic modeling with positron emission tomography (PET). Feng D; Wang X Comput Biol Med; 1993 Jan; 23(1):57-68. PubMed ID: 8467639 [TBL] [Abstract][Full Text] [Related]
9. Direct reconstruction of kinetic parameter images from dynamic PET data. Kamasak ME; Bouman CA; Morris ED; Sauer K IEEE Trans Med Imaging; 2005 May; 24(5):636-50. PubMed ID: 15889551 [TBL] [Abstract][Full Text] [Related]
10. Nuclear medicine imaging in tuberculosis using commercially available radiopharmaceuticals. Sathekge M; Maes A; D'Asseler Y; Vorster M; Van de Wiele C Nucl Med Commun; 2012 Jun; 33(6):581-90. PubMed ID: 22422098 [TBL] [Abstract][Full Text] [Related]
11. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. Naganawa M; Kimura Y; Ishii K; Oda K; Ishiwata K; Matani A IEEE Trans Biomed Eng; 2005 Feb; 52(2):201-10. PubMed ID: 15709657 [TBL] [Abstract][Full Text] [Related]
12. Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data. Fang YH; Kao T; Liu RS; Wu LC Eur J Nucl Med Mol Imaging; 2004 May; 31(5):692-702. PubMed ID: 14740178 [TBL] [Abstract][Full Text] [Related]
13. Computer phantom study of brain PET glucose metabolism imaging using a rotating SPECT/PET camera. McGoron AJ; Mao X; Georgiou MF; Kuluz JW Comput Biol Med; 2005 Jul; 35(6):511-31. PubMed ID: 15780862 [TBL] [Abstract][Full Text] [Related]
14. "Population" approach improves parameter estimation of kinetic models from dynamic PET data. Bertoldo A; Sparacino G; Cobelli C IEEE Trans Med Imaging; 2004 Mar; 23(3):297-306. PubMed ID: 15027522 [TBL] [Abstract][Full Text] [Related]
15. Fast determination method of cerebral metabolic rate images of glucose using dynamic PET data. Obi T; Oku M; Yamaya T; Toyama H; Yamaguchi M; Ohyama N Igaku Butsuri; 2002; 22(3):159-72. PubMed ID: 12766280 [TBL] [Abstract][Full Text] [Related]
16. Dynamic imaging and tracer kinetic modeling for emission tomography using rotating detectors. Lau CH; Feng D; Hutton BF; Lun DP; Siu WC IEEE Trans Med Imaging; 1998 Dec; 17(6):986-94. PubMed ID: 10048855 [TBL] [Abstract][Full Text] [Related]
17. Optimizing dual-time and serial positron emission tomography and single photon emission computed tomography scans for diagnoses and therapy monitoring. Thie JA Mol Imaging Biol; 2007; 9(6):348-56. PubMed ID: 17899297 [TBL] [Abstract][Full Text] [Related]
18. Quantification method in [18F]fluorodeoxyglucose brain positron emission tomography using independent component analysis. Su KH; Wu LC; Liu RS; Wang SJ; Chen JC Nucl Med Commun; 2005 Nov; 26(11):995-1004. PubMed ID: 16208178 [TBL] [Abstract][Full Text] [Related]
19. Usefulness of FDG-PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum. Whiteford MH; Whiteford HM; Yee LF; Ogunbiyi OA; Dehdashti F; Siegel BA; Birnbaum EH; Fleshman JW; Kodner IJ; Read TE Dis Colon Rectum; 2000 Jun; 43(6):759-67; discussion 767-70. PubMed ID: 10859074 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous estimation of physiological parameters and the input function--in vivo PET data. Wong KP; Feng D; Meikle SR; Fulham MJ IEEE Trans Inf Technol Biomed; 2001 Mar; 5(1):67-76. PubMed ID: 11300218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]