BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11223279)

  • 41. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea.
    Roux I; Wu JS; McIntosh JM; Glowatzki E
    J Neurophysiol; 2016 Aug; 116(2):479-92. PubMed ID: 27098031
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cholinergically-induced changes in outward currents in hair cells isolated from the semicircular canal of the frog.
    Housley GD; Norris CH; Guth PS
    Hear Res; 1990 Jan; 43(2-3):121-33. PubMed ID: 2312408
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of inositol trisphosphate on ACh-induced outward currents in bullfrog saccular hair cells.
    Yoshida N; Shigemoto T; Sugai T; Ohmori H
    Brain Res; 1994 Apr; 644(1):90-100. PubMed ID: 8032954
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pharmacologically distinct nicotinic acetylcholine receptors drive efferent-mediated excitation in calyx-bearing vestibular afferents.
    Holt JC; Kewin K; Jordan PM; Cameron P; Klapczynski M; McIntosh JM; Crooks PA; Dwoskin LP; Lysakowski A
    J Neurosci; 2015 Feb; 35(8):3625-43. PubMed ID: 25716861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells.
    Drescher MJ; Cho WJ; Folbe AJ; Selvakumar D; Kewson DT; Abu-Hamdan MD; Oh CK; Ramakrishnan NA; Hatfield JS; Khan KM; Anne S; Harpool EC; Drescher DG
    Neuroscience; 2010 Dec; 171(4):1054-74. PubMed ID: 20883745
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of the nicotinic acetylcholine receptor subunit, alpha9, in the guinea pig cochlea.
    Park HJ; Niedzielski AS; Wenthold RJ
    Hear Res; 1997 Oct; 112(1-2):95-105. PubMed ID: 9367232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synaptic hyperpolarization and inhibition of turtle cochlear hair cells.
    Art JJ; Fettiplace R; Fuchs PA
    J Physiol; 1984 Nov; 356():525-50. PubMed ID: 6097676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.
    Meredith FL; Rennie KJ
    Hear Res; 2016 Aug; 338():40-51. PubMed ID: 26836968
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of ATP and ATP agonists on the physiology of the isolated semicircular canal of the frog (Rana pipiens).
    Aubert A; Norris CH; Guth PS
    Neuroscience; 1994 Oct; 62(3):963-74. PubMed ID: 7870316
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Responses of pigeon vestibular hair cells to cholinergic agonists and antagonists.
    Li GQ; Correia MJ
    Brain Res; 2011 Feb; 1373():25-38. PubMed ID: 21147073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distribution of efferent cholinergic terminals and alpha-bungarotoxin binding to putative nicotinic acetylcholine receptors in the human vestibular end-organs.
    Ishiyama A; Lopez I; Wackym PA
    Laryngoscope; 1995 Nov; 105(11):1167-72. PubMed ID: 7475869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pharmacology of acetylcholine-mediated cell signaling in the lateral line organ following efferent stimulation.
    Dawkins R; Keller SL; Sewell WF
    J Neurophysiol; 2005 May; 93(5):2541-51. PubMed ID: 15615825
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vestibular hair cells of the chick express the nicotinic acetylcholine receptor subunit alpha 9.
    Lustig LR; Hiel H; Fuchs PA
    J Vestib Res; 1999; 9(5):359-67. PubMed ID: 10544374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Actions of cholinergic agonists and antagonists on the efferent synapse in the frog sacculus.
    Sugai T; Yano J; Sugitani M; Ooyama H
    Hear Res; 1992 Aug; 61(1-2):56-64. PubMed ID: 1526894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs.
    Ricci AJ; Rennie KJ; Correia MJ
    Pflugers Arch; 1996 May; 432(1):34-42. PubMed ID: 8662265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alpha-9 nicotinic acetylcholine receptor immunoreactivity in the rodent vestibular labyrinth.
    Luebke AE; Maroni PD; Guth SM; Lysakowski A
    J Comp Neurol; 2005 Nov; 492(3):323-33. PubMed ID: 16217793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of nicotinic acetylcholine receptors enhances a slow calcium-dependent potassium conductance and reduces the firing of stratum oriens interneurons.
    Griguoli M; Scuri R; Ragozzino D; Cherubini E
    Eur J Neurosci; 2009 Sep; 30(6):1011-22. PubMed ID: 19735287
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A role for chloride in the suppressive effect of acetylcholine on afferent vestibular activity.
    Pantoja AM; Holt JC; Guth PS
    Hear Res; 1997 Oct; 112(1-2):21-32. PubMed ID: 9367226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular and Functional Changes to Postsynaptic Cholinergic Signaling in the Vestibular Sensory Organs of Aging C57BL/6 Mice.
    Poppi LA; Bigland MJ; Cresswell ET; Tabatabaee H; Lorincz D; Drury HR; Callister RJ; Holt JC; Lim R; Brichta AM; Smith DW
    J Gerontol A Biol Sci Med Sci; 2023 Jun; 78(6):920-929. PubMed ID: 36840917
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Patch clamp recordings of hair cells isolated from zebrafish auditory and vestibular end organs.
    Haden M; Einarsson R; Yazejian B
    Neuroscience; 2013 Sep; 248():79-87. PubMed ID: 23747350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.