These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11223297)

  • 1. A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability.
    Rattay F; Leao RN; Felix H
    Hear Res; 2001 Mar; 153(1-2):64-79. PubMed ID: 11223297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation.
    Cartee LA; van den Honert C; Finley CC; Miller RL
    Hear Res; 2000 Aug; 146(1-2):143-52. PubMed ID: 10913891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional spiraling finite element model of the electrically stimulated cochlea.
    Hanekom T
    Ear Hear; 2001 Aug; 22(4):300-15. PubMed ID: 11527037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes.
    Rattay F; Lutter P; Felix H
    Hear Res; 2001 Mar; 153(1-2):43-63. PubMed ID: 11223296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea.
    Frijns JH; de Snoo SL; Schoonhoven R
    Hear Res; 1995 Jul; 87(1-2):170-86. PubMed ID: 8567435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Tissue Degeneration in Rosenthal's Canal and Its Impact on Electrical Stimulation of the Auditory Nerve by Cochlear Implants: An Image-Based Modeling Study.
    Sriperumbudur KK; Appali R; Gummer AW; van Rienen U
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach.
    Briaire JJ; Frijns JH
    Hear Res; 2006 Apr; 214(1-2):17-27. PubMed ID: 16520009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial results from a model of ephaptic excitation in the electrically excited peripheral auditory nervous system.
    Jönsson R; Hanekom T; Hanekom JJ
    Hear Res; 2008 Mar; 237(1-2):49-56. PubMed ID: 18255244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a model of the cochlear neural membrane. II: comparison of model and physiological measures of membrane properties measured in response to intrameatal electrical stimulation.
    Cartee LA
    Hear Res; 2000 Aug; 146(1-2):153-66. PubMed ID: 10913892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current distributions in cochlear stimulation.
    Black RC; Clark GM; Tong YC; Patrick JF
    Ann N Y Acad Sci; 1983; 405():137-45. PubMed ID: 6575639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current distributions in the cat cochlea: a modelling and electrophysiological study.
    O'Leary SJ; Black RC; Clark GM
    Hear Res; 1985 Jun; 18(3):273-81. PubMed ID: 3840160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical model description of peripheral neural excitation in cochlear implant recipients: 2. Spread of the effective stimulation field (ESF), from ECAP and FEA.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):100-11. PubMed ID: 19063955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of multichannel cochlear implants for animal research.
    Rebscher SJ; Hetherington AM; Snyder RL; Leake PA; Bonham BH
    J Neurosci Methods; 2007 Oct; 166(1):1-12. PubMed ID: 17727956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency selectivity in the auditory periphery: similarities between damaged and developing ears.
    Walsh EJ; McGee J
    Am J Otolaryngol; 1990; 11(1):23-32. PubMed ID: 2321707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature.
    Kalkman RK; Briaire JJ; Frijns JH
    Network; 2016; 27(2-3):107-134. PubMed ID: 27135951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve.
    van den Honert C; Stypulkowski PH
    Hear Res; 1987; 29(2-3):195-206. PubMed ID: 3624083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation.
    Shepherd RK; Hatsushika S; Clark GM
    Hear Res; 1993 Mar; 66(1):108-20. PubMed ID: 8473242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Receptive fields of neurons of primary auditory cortex neurons in the cat].
    Volkov IO; Dembnovetskiĭ OF
    Neirofiziologiia; 1981; 13(5):467-73. PubMed ID: 7300956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.