These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 11223816)

  • 1. Innervation of the ring gland of Drosophila melanogaster.
    Siegmund T; Korge G
    J Comp Neurol; 2001 Mar; 431(4):481-91. PubMed ID: 11223816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: a cytophysiological analysis of the ring gland.
    Dai JD; Gilbert LI
    Dev Biol; 1991 Apr; 144(2):309-26. PubMed ID: 1901285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurons producing specific neuropeptides in the central nervous system of normal and pupariation-delayed Drosophila.
    Zitnan D; Sehnal F; Bryant PJ
    Dev Biol; 1993 Mar; 156(1):117-35. PubMed ID: 8449364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections.
    Kaneko M; Hall JC
    J Comp Neurol; 2000 Jun; 422(1):66-94. PubMed ID: 10842219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult-specific insulin-producing neurons in Drosophila melanogaster.
    Ohhara Y; Kobayashi S; Yamakawa-Kobayashi K; Yamanaka N
    J Comp Neurol; 2018 Jun; 526(8):1351-1367. PubMed ID: 29424424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster.
    Lee G; Kim KM; Kikuno K; Wang Z; Choi YJ; Park JH
    Cell Tissue Res; 2008 Mar; 331(3):659-73. PubMed ID: 18087727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression.
    Blanchardon E; Grima B; Klarsfeld A; Chélot E; Hardin PE; Préat T; Rouyer F
    Eur J Neurosci; 2001 Mar; 13(5):871-88. PubMed ID: 11264660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic visualization of nervous system in live Drosophila.
    Sun B; Xu P; Salvaterra PM
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10438-43. PubMed ID: 10468627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple amidated neuropeptides are required for normal circadian locomotor rhythms in Drosophila.
    Taghert PH; Hewes RS; Park JH; O'Brien MA; Han M; Peck ME
    J Neurosci; 2001 Sep; 21(17):6673-86. PubMed ID: 11517257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ultrastructural analysis of the ecdysoneless (l(3)ecd1ts) ring gland during the third larval instar of Drosophila melanogaster.
    Dai JD; Henrich VC; Gilbert LI
    Cell Tissue Res; 1991 Sep; 265(3):435-45. PubMed ID: 1786592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Circadian Clock Is a Key Driver of Steroid Hormone Production in Drosophila.
    Di Cara F; King-Jones K
    Curr Biol; 2016 Sep; 26(18):2469-2477. PubMed ID: 27546572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural control of steroid hormone biosynthesis during development in the fruit fly Drosophila melanogaster.
    Niwa YS; Niwa R
    Genes Genet Syst; 2014; 89(1):27-34. PubMed ID: 24817759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocols for Visualizing Steroidogenic Organs and Their Interactive Organs with Immunostaining in the Fruit Fly Drosophila melanogaster.
    Imura E; Yoshinari Y; Shimada-Niwa Y; Niwa R
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28448012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural factors that stimulate ecdysteroid synthesis by the larval ring gland of Drosophila melanogaster.
    Henrich VC; Pak MD; Gilbert LI
    J Comp Physiol B; 1987; 157(5):543-9. PubMed ID: 3121682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroendocrine control of larval ecdysis behavior in Drosophila: complex regulation by partially redundant neuropeptides.
    Clark AC; del Campo ML; Ewer J
    J Neurosci; 2004 Apr; 24(17):4283-92. PubMed ID: 15115824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila.
    Shimada-Niwa Y; Niwa R
    Nat Commun; 2014 Dec; 5():5778. PubMed ID: 25502946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function.
    Helfrich-Förster C; Edwards T; Yasuyama K; Wisotzki B; Schneuwly S; Stanewsky R; Meinertzhagen IA; Hofbauer A
    J Neurosci; 2002 Nov; 22(21):9255-66. PubMed ID: 12417651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila.
    McNabb SL; Baker JD; Agapite J; Steller H; Riddiford LM; Truman JW
    Neuron; 1997 Oct; 19(4):813-23. PubMed ID: 9354328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system.
    Draizen TA; Ewer J; Robinow S
    J Neurobiol; 1999 Mar; 38(4):455-65. PubMed ID: 10084681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurosecretion: peptidergic systems in insects.
    Predel R; Eckert M
    Naturwissenschaften; 2000 Aug; 87(8):343-50. PubMed ID: 11013885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.