BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 11223884)

  • 1. Recent progress in the biology, chemistry and structural biology of DNA glycosylases.
    Schärer OD; Jiricny J
    Bioessays; 2001 Mar; 23(3):270-81. PubMed ID: 11223884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural basis of specific base-excision repair by uracil-DNA glycosylase.
    Savva R; McAuley-Hecht K; Brown T; Pearl L
    Nature; 1995 Feb; 373(6514):487-93. PubMed ID: 7845459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase.
    Putnam CD; Shroyer MJ; Lundquist AJ; Mol CD; Arvai AS; Mosbaugh DW; Tainer JA
    J Mol Biol; 1999 Mar; 287(2):331-46. PubMed ID: 10080896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition.
    Biswas T; Clos LJ; SantaLucia J; Mitra S; Roy R
    J Mol Biol; 2002 Jul; 320(3):503-13. PubMed ID: 12096906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structural basis for the recognition and removal of damaged bases from DNA by members of a DNA glycosylase superfamily].
    Yamagata Y
    Tanpakushitsu Kakusan Koso; 2001 Jun; 46(8 Suppl):976-85. PubMed ID: 11436324
    [No Abstract]   [Full Text] [Related]  

  • 8. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA.
    Slupphaug G; Mol CD; Kavli B; Arvai AS; Krokan HE; Tainer JA
    Nature; 1996 Nov; 384(6604):87-92. PubMed ID: 8900285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rate of base excision repair of uracil is controlled by the initiating glycosylase.
    Visnes T; Akbari M; Hagen L; Slupphaug G; Krokan HE
    DNA Repair (Amst); 2008 Nov; 7(11):1869-81. PubMed ID: 18721906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM.
    Fromme JC; Verdine GL
    Nat Struct Biol; 2002 Jul; 9(7):544-52. PubMed ID: 12055620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
    Guan Y; Manuel RC; Arvai AS; Parikh SS; Mol CD; Miller JH; Lloyd S; Tainer JA
    Nat Struct Biol; 1998 Dec; 5(12):1058-64. PubMed ID: 9846876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.
    Masaoka A; Matsubara M; Hasegawa R; Tanaka T; Kurisu S; Terato H; Ohyama Y; Karino N; Matsuda A; Ide H
    Biochemistry; 2003 May; 42(17):5003-12. PubMed ID: 12718543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA.
    Parikh SS; Mol CD; Slupphaug G; Bharati S; Krokan HE; Tainer JA
    EMBO J; 1998 Sep; 17(17):5214-26. PubMed ID: 9724657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-replicative base excision repair in replication foci.
    Otterlei M; Warbrick E; Nagelhus TA; Haug T; Slupphaug G; Akbari M; Aas PA; Steinsbekk K; Bakke O; Krokan HE
    EMBO J; 1999 Jul; 18(13):3834-44. PubMed ID: 10393198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA repair mechanisms for the recognition and removal of damaged DNA bases.
    Mol CD; Parikh SS; Putnam CD; Lo TP; Tainer JA
    Annu Rev Biophys Biomol Struct; 1999; 28():101-28. PubMed ID: 10410797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of DNA alkylation damage.
    Bouziane M; Miao F; Ye N; Holmquist G; Chyzak G; O'Connor TR
    Acta Biochim Pol; 1998; 45(1):191-202. PubMed ID: 9701511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Base excision repair of DNA in mammalian cells.
    Krokan HE; Nilsen H; Skorpen F; Otterlei M; Slupphaug G
    FEBS Lett; 2000 Jun; 476(1-2):73-7. PubMed ID: 10878254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passing the baton in base excision repair.
    Wilson SH; Kunkel TA
    Nat Struct Biol; 2000 Mar; 7(3):176-8. PubMed ID: 10700268
    [No Abstract]   [Full Text] [Related]  

  • 19. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects.
    Parikh SS; Walcher G; Jones GD; Slupphaug G; Krokan HE; Blackburn GM; Tainer JA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5083-8. PubMed ID: 10805771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases.
    Mol CD; Arvai AS; Begley TJ; Cunningham RP; Tainer JA
    J Mol Biol; 2002 Jan; 315(3):373-84. PubMed ID: 11786018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.