These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 11223940)
1. Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment in Candida albicans. O'Sullivan JM; Mihr MJ; Santos MA; Tuite MF Yeast; 2001 Mar; 18(4):313-22. PubMed ID: 11223940 [TBL] [Abstract][Full Text] [Related]
2. Transfer RNA structural change is a key element in the reassignment of the CUG codon in Candida albicans. Santos MA; Perreau VM; Tuite MF EMBO J; 1996 Sep; 15(18):5060-8. PubMed ID: 8890179 [TBL] [Abstract][Full Text] [Related]
3. The Candida albicans gene encoding the cytoplasmic leucyl-tRNA synthetase: implications for the evolution of CUG codon reassignment. O'Sullivan JM; Mihr MJ; Santos MA; Tuite MF Gene; 2001 Sep; 275(1):133-40. PubMed ID: 11574161 [TBL] [Abstract][Full Text] [Related]
4. Characterization of serine and leucine tRNAs in an asporogenic yeast Candida cylindracea and evolutionary implications of genes for tRNA(Ser)CAG responsible for translation of a non-universal genetic code. Suzuki T; Ueda T; Yokogawa T; Nishikawa K; Watanabe K Nucleic Acids Res; 1994 Jan; 22(2):115-23. PubMed ID: 8121794 [TBL] [Abstract][Full Text] [Related]
5. Stop codon decoding in Candida albicans: from non-standard back to standard. Moura G; Miranda I; Cheesman C; Tuite MF; Santos MA Yeast; 2002 Jun; 19(9):727-33. PubMed ID: 12112228 [TBL] [Abstract][Full Text] [Related]
6. [The molecular mechanism of evolution of changes in the genetic code]. Gomes AC; Costa T; Carreto L; Santos MA Mol Biol (Mosk); 2006; 40(4):634-9. PubMed ID: 16913222 [TBL] [Abstract][Full Text] [Related]
7. The Candida albicans CUG-decoding ser-tRNA has an atypical anticodon stem-loop structure. Perreau VM; Keith G; Holmes WM; Przykorska A; Santos MA; Tuite MF J Mol Biol; 1999 Nov; 293(5):1039-53. PubMed ID: 10547284 [TBL] [Abstract][Full Text] [Related]
8. In vivo evidence for non-universal usage of the codon CUG in Candida maltosa. Sugiyama H; Ohkuma M; Masuda Y; Park SM; Ohta A; Takagi M Yeast; 1995 Jan; 11(1):43-52. PubMed ID: 7762300 [TBL] [Abstract][Full Text] [Related]
9. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme. Rokov-Plavec J; Lesjak S; Landeka I; Mijakovic I; Weygand-Durasevic I Arch Biochem Biophys; 2002 Jan; 397(1):40-50. PubMed ID: 11747308 [TBL] [Abstract][Full Text] [Related]
10. Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Massey SE; Moura G; Beltrão P; Almeida R; Garey JR; Tuite MF; Santos MA Genome Res; 2003 Apr; 13(4):544-57. PubMed ID: 12670996 [TBL] [Abstract][Full Text] [Related]
11. The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation? Santos MA; Ueda T; Watanabe K; Tuite MF Mol Microbiol; 1997 Nov; 26(3):423-31. PubMed ID: 9402014 [TBL] [Abstract][Full Text] [Related]
12. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Santos MA; Tuite MF Nucleic Acids Res; 1995 May; 23(9):1481-6. PubMed ID: 7784200 [TBL] [Abstract][Full Text] [Related]
13. A deviation from the universal genetic code in Candida maltosa and consequences for heterologous expression of cytochromes P450 52A4 and 52A5 in Saccharomyces cerevisiae. Zimmer T; Schunck WH Yeast; 1995 Jan; 11(1):33-41. PubMed ID: 7762299 [TBL] [Abstract][Full Text] [Related]
14. The genetic code of the fungal CTG clade. Santos MA; Gomes AC; Santos MC; Carreto LC; Moura GR C R Biol; 2011; 334(8-9):607-11. PubMed ID: 21819941 [TBL] [Abstract][Full Text] [Related]
15. Evolution of the genetic code in yeasts. Miranda I; Silva R; Santos MA Yeast; 2006 Feb; 23(3):203-13. PubMed ID: 16498697 [TBL] [Abstract][Full Text] [Related]
16. Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5'-CAG-3' (leucine) anticodon. Santos MA; Keith G; Tuite MF EMBO J; 1993 Feb; 12(2):607-16. PubMed ID: 8440250 [TBL] [Abstract][Full Text] [Related]
17. Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: evolutionary implications. Yokogawa T; Suzuki T; Ueda T; Mori M; Ohama T; Kuchino Y; Yoshinari S; Motoki I; Nishikawa K; Osawa S Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7408-11. PubMed ID: 1502151 [TBL] [Abstract][Full Text] [Related]
18. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex. Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008 [TBL] [Abstract][Full Text] [Related]
19. Arabidopsis seryl-tRNA synthetase: the first crystal structure and novel protein interactor of plant aminoacyl-tRNA synthetase. Kekez M; Zanki V; Kekez I; Baranasic J; Hodnik V; Duchêne AM; Anderluh G; Gruic-Sovulj I; Matković-Čalogović D; Weygand-Durasevic I; Rokov-Plavec J FEBS J; 2019 Feb; 286(3):536-554. PubMed ID: 30570212 [TBL] [Abstract][Full Text] [Related]
20. Fidelity of seryl-tRNA synthetase to binding of natural amino acids from HierDock first principles computations. McClendon CL; Vaidehi N; Kam VW; Zhang D; Goddard WA Protein Eng Des Sel; 2006 May; 19(5):195-203. PubMed ID: 16517553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]