These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11224155)

  • 1. Reinforcement loss and behavioral tolerance to d-amphetamine: using percentile schedules to control reinforcement density.
    Galbicka G; Kautz MA; Ritch ZJ
    Behav Pharmacol; 1992 Dec; 3(6):535-544. PubMed ID: 11224155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control over response number by a targeted percentile schedule: reinforcement loss and the acute effects of d-amphetamine.
    Galbicka G; Fowler KP; Ritch ZJ
    J Exp Anal Behav; 1991 Sep; 56(2):205-15. PubMed ID: 1955813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response acquisition under targeted percentile schedules: a continuing quandary for molar models of operant behavior.
    Galbicka G; Kautz MA; Jagers T
    J Exp Anal Behav; 1993 Jul; 60(1):171-84. PubMed ID: 8354966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus control and the development of behavioral tolerance to daily injections of d-amphetamine in the rat.
    Rees DC; Wood RW; Laties VG
    J Pharmacol Exp Ther; 1987 Jan; 240(1):65-73. PubMed ID: 3806398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral effects of enantiomers of dizocilpine under two "counting" procedures in rats.
    Galbicka G; Kautz MA; Jagers T
    Pharmacol Biochem Behav; 1994 Dec; 49(4):943-8. PubMed ID: 7886111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The existence of tolerance to and cross-tolerance between d-amphetamine and methylphenidate for their effects on milk consumption and on differential-reinforcement-of-low-rate performance in the rat.
    Pearl RG; Seiden LS
    J Pharmacol Exp Ther; 1976 Sep; 198(3):635-47. PubMed ID: 978464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gestational exposure to methylmercury retards choice in transition in aging rats.
    Newland MC; Reile PA; Langston JL
    Neurotoxicol Teratol; 2004; 26(2):179-94. PubMed ID: 15019952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the behavioral effects of carbon monoxide by reinforcement contingencies.
    Ator NA
    Neurobehav Toxicol Teratol; 1982; 4(1):51-61. PubMed ID: 7070569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of behavioral history across responses in the reversal of the effects of cocaine and d-amphetamine on the punished behavior of squirrel monkeys.
    Tatham TA; Gyorda AM; Barrett JE
    Behav Pharmacol; 1993 Feb; 4(1):61-68. PubMed ID: 11224172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral tolerance and cross-tolerance to the response rate-decreasing effects of mu opioids in rats.
    Hughes CE; Dykstra LA; Picker MJ
    Behav Pharmacol; 1996 May; 7(3):228-236. PubMed ID: 11224415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of advanced candidate anticonvulsants under two rodent models of 'counting'.
    Galbicka G; Ritchie V; Ferguson J; Didie ER; Doan-Wellons Q
    J Appl Toxicol; 2001 Dec; 21 Suppl 1():S109-14. PubMed ID: 11920930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate-dependency hypothesis and the rate-decreasing effects of d-amphetamine on schedule-induced drinking.
    Flores P; Pellón R
    Behav Pharmacol; 1995 Jan; 6(1):16-23. PubMed ID: 11224307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental enrichment decreases intravenous amphetamine self-administration in rats: dose-response functions for fixed- and progressive-ratio schedules.
    Green TA; Gehrke BJ; Bardo MT
    Psychopharmacology (Berl); 2002 Aug; 162(4):373-8. PubMed ID: 12172690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats.
    Alderson HL; Latimer MP; Blaha CD; Phillips AG; Winn P
    Neuroscience; 2004; 125(2):349-58. PubMed ID: 15062978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnitude of initial effect influences development of tolerance to morphine in rats responding under a fixed-ratio schedule of food presentation.
    Young AM; Griffin AC
    Behav Pharmacol; 1990; 1(6):531-540. PubMed ID: 11175439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of competitive and noncompetitive GABA(A) antagonists on the acquisition of a discrimination in squirrel monkeys.
    Pakarinen ED; Moerschbaecher JM
    Behav Pharmacol; 1995 Mar; 6(2):156-166. PubMed ID: 11224323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pentobarbital, d-amphetamine, and nicotine on two models of sustained attention in pigeons.
    Lemmonds CA; Williams DK; Wenger GR
    Psychopharmacology (Berl); 2002 Oct; 163(3-4):391-8. PubMed ID: 12373439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of amphetamine on differential reinforcement of low rates of responding.
    Saulsgiver KA; McClure EA; Wynne CD
    Behav Pharmacol; 2007 Mar; 18(2):119-33. PubMed ID: 17351419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid acquisition of preference in concurrent schedules: effects of d-amphetamine on sensitivity to reinforcement amount.
    Maguire DR; Rodewald AM; Hughes CE; Pitts RC
    Behav Processes; 2009 Jun; 81(2):238-43. PubMed ID: 19429218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In a low-versus high-dose drug discrimination task, random reinforcement in one drug state alters discriminative control only in that state.
    Rijnders HJ; Järbe TU; Slangen JL
    Behav Pharmacol; 1993 Feb; 4(1):37-45. PubMed ID: 11224169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.