BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 11224822)

  • 1. Metabolic demands of intense aerobic interval training in competitive cyclists.
    Stepto NK; Martin DT; Fallon KE; Hawley JA
    Med Sci Sports Exerc; 2001 Feb; 33(2):303-10. PubMed ID: 11224822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.
    Perry CG; Heigenhauser GJ; Bonen A; Spriet LL
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1112-23. PubMed ID: 19088769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic and neuromuscular adaptations to endurance training in professional cyclists: a longitudinal study.
    Lucía A; Hoyos J; Pardo J; Chicharro JL
    Jpn J Physiol; 2000 Jun; 50(3):381-8. PubMed ID: 11016988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of work and recovery duration on skeletal muscle oxygenation and fuel use during sustained intermittent exercise.
    Christmass MA; Dawson B; Arthur PG
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):436-47. PubMed ID: 10502077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration.
    Stellingwerff T; Spriet LL; Watt MJ; Kimber NE; Hargreaves M; Hawley JA; Burke LM
    Am J Physiol Endocrinol Metab; 2006 Feb; 290(2):E380-8. PubMed ID: 16188909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.
    Burgomaster KA; Heigenhauser GJ; Gibala MJ
    J Appl Physiol (1985); 2006 Jun; 100(6):2041-7. PubMed ID: 16469933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warm-up strategy and high-intensity endurance performance in trained cyclists.
    Christensen PM; Bangsbo J
    Int J Sports Physiol Perform; 2015 Apr; 10(3):353-60. PubMed ID: 25229657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.
    Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA
    J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists.
    Creer AR; Ricard MD; Conlee RK; Hoyt GL; Parcell AC
    Int J Sports Med; 2004 Feb; 25(2):92-8. PubMed ID: 14986190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic recovery in professional road cyclists: a 31P-MRS study.
    Hug F; Bendahan D; Le Fur Y; Cozzone PJ; Grélot L
    Med Sci Sports Exerc; 2005 May; 37(5):846-52. PubMed ID: 15870640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; Obminski G; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):703-16. PubMed ID: 9218229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between blood lactate response to exercise and endurance performance in competitive female master cyclists.
    Nichols JF; Phares SL; Buono MJ
    Int J Sports Med; 1997 Aug; 18(6):458-63. PubMed ID: 9351693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration.
    Seiler S; Jøranson K; Olesen BV; Hetlelid KJ
    Scand J Med Sci Sports; 2013 Feb; 23(1):74-83. PubMed ID: 21812820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise.
    Rauch HG; St Clair Gibson A; Lambert EV; Noakes TD
    Br J Sports Med; 2005 Jan; 39(1):34-8. PubMed ID: 15618337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of endurance training on the ventilatory response to exercise in elite cyclists.
    Hoogeveen AR
    Eur J Appl Physiol; 2000 May; 82(1-2):45-51. PubMed ID: 10879442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise.
    Yu M; Stepto NK; Chibalin AV; Fryer LG; Carling D; Krook A; Hawley JA; Zierath JR
    J Physiol; 2003 Jan; 546(Pt 2):327-35. PubMed ID: 12527721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and neuromuscular responses of competitive cyclists during a simulated self-paced interval training session.
    Villerius V; Duc S; Grappe F
    Int J Sports Med; 2008 Sep; 29(9):770-7. PubMed ID: 18080949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Effects of Carbohydrate Ingestion Between Bouts of Intense Aerobic Interval Exercise.
    McCarthy DG; Spriet LL
    Int J Sports Physiol Perform; 2020 Feb; 15(2):262-267. PubMed ID: 31188694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium bicarbonate ingestion does not alter the slow component of oxygen uptake kinetics in professional cyclists.
    Santalla A; Pérez M; Montilla M; Vicente L; Davison R; Earnest C; Lucía A
    J Sports Sci; 2003 Jan; 21(1):39-47. PubMed ID: 12587890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise.
    Christmass MA; Dawson B; Passeretto P; Arthur PG
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):423-35. PubMed ID: 10502076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.