These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
4. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. Wei G; Ma PX J Biomed Mater Res A; 2006 Aug; 78(2):306-15. PubMed ID: 16637043 [TBL] [Abstract][Full Text] [Related]
5. Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. Ma Z; Gao C; Gong Y; Shen J J Biomed Mater Res B Appl Biomater; 2003 Oct; 67(1):610-7. PubMed ID: 14528458 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Gross KA; Rodríguez-Lorenzo LM Biomaterials; 2004 Sep; 25(20):4955-62. PubMed ID: 15109856 [TBL] [Abstract][Full Text] [Related]
7. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent. Li S; Chen X; Li M Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of dual-pore scaffolds using SLUP (salt leaching using powder) and WNM (wire-network molding) techniques. Cho YS; Hong MW; Kim SY; Lee SJ; Lee JH; Kim YY; Cho YS Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():546-55. PubMed ID: 25491863 [TBL] [Abstract][Full Text] [Related]
9. A mechanical evaluation of micro-HA/CS composite scaffolds with interconnected spherical macropores. Ruixin L; Dong L; Bin Z; Hao L; Xue L; Caihong S; Weihua S; Xiaoli Q; Yinghai Y; Weining A; Xizheng Z Biomed Eng Online; 2016 Feb; 15():12. PubMed ID: 26831146 [TBL] [Abstract][Full Text] [Related]
10. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds. Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649 [TBL] [Abstract][Full Text] [Related]
13. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Sarazin P; Roy X; Favis BD Biomaterials; 2004 Dec; 25(28):5965-78. PubMed ID: 15183611 [TBL] [Abstract][Full Text] [Related]
14. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related]
15. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Liu X; Ma PX Biomaterials; 2009 Sep; 30(25):4094-103. PubMed ID: 19481080 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering. Izquierdo R; Garcia-Giralt N; Rodriguez MT; Cáceres E; García SJ; Gómez Ribelles JL; Monleón M; Monllau JC; Suay J J Biomed Mater Res A; 2008 Apr; 85(1):25-35. PubMed ID: 17688257 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique. Lebourg M; Sabater Serra R; Más Estellés J; Hernández Sánchez F; Gómez Ribelles JL; Suay Antón J J Mater Sci Mater Med; 2008 May; 19(5):2047-53. PubMed ID: 17968506 [TBL] [Abstract][Full Text] [Related]
18. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
19. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
20. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]