These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 11225728)
1. Hydrogen peroxide-induced activation of SAPK/JNK regulated by phosphatidylinositol 3-kinase in Chinese hamster V79 cells. Inanami O; Takahashi K; Yoshito A; Kuwabara M Antioxid Redox Signal; 1999; 1(1):113-21. PubMed ID: 11225728 [TBL] [Abstract][Full Text] [Related]
2. Elevation of intracellular calcium ions is essential for the H2O2-induced activation of SAPK/JNK but not for that of p38 and ERK in Chinese hamster V79 cells. Inanami O; Ohta T; Ito S; Kuwabara M Antioxid Redox Signal; 1999; 1(4):501-8. PubMed ID: 11233147 [TBL] [Abstract][Full Text] [Related]
3. Stretch activation of jun N-terminal kinase/stress-activated protein kinase in mesangial cells. Ingram AJ; James L; Ly H; Thai K; Scholey JW Kidney Int; 2000 Oct; 58(4):1431-9. PubMed ID: 11012878 [TBL] [Abstract][Full Text] [Related]
4. Activation of c-Jun NH2-terminal kinase (JNK/SAPK) in LLC-PK1 cells by cadmium. Matsuoka M; Igisu H Biochem Biophys Res Commun; 1998 Oct; 251(2):527-32. PubMed ID: 9792807 [TBL] [Abstract][Full Text] [Related]
5. Effects of intracellular calcium chelator BAPTA-AM on radiation-induced apoptosis regulated by activation of SAPK/JNK and caspase-3 in MOLT-4 cells. Takahashi K; Inanami O; Kuwabara M Int J Radiat Biol; 1999 Sep; 75(9):1099-105. PubMed ID: 10528917 [TBL] [Abstract][Full Text] [Related]
6. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages. Kim J; Sharma RP Toxicol Sci; 2004 Oct; 81(2):518-27. PubMed ID: 15254339 [TBL] [Abstract][Full Text] [Related]
7. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Ferrer I; Friguls B; Dalfó E; Planas AM Acta Neuropathol; 2003 May; 105(5):425-37. PubMed ID: 12677442 [TBL] [Abstract][Full Text] [Related]
9. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Andreozzi F; Laratta E; Sciacqua A; Perticone F; Sesti G Circ Res; 2004 May; 94(9):1211-8. PubMed ID: 15044323 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanism(s) of burn-induced insulin resistance in murine skeletal muscle: role of IRS phosphorylation. Zhang Q; Carter EA; Ma BY; White M; Fischman AJ; Tompkins RG Life Sci; 2005 Oct; 77(24):3068-77. PubMed ID: 15982669 [TBL] [Abstract][Full Text] [Related]
11. Roles of protein kinase C delta in the accumulation of P53 and the induction of apoptosis in H2O2-treated bovine endothelial cells. Niwa K; Inanami O; Yamamori T; Ohta T; Hamasu T; Karino T; Kuwabara M Free Radic Res; 2002 Nov; 36(11):1147-53. PubMed ID: 12592666 [TBL] [Abstract][Full Text] [Related]
12. BAPTA-AM, an intracellular calcium chelator, inhibits RANKL-induced bone marrow macrophages differentiation through MEK/ERK, p38 MAPK and Akt, but not JNK pathways. Zhou S; Yuan X; Liu Q; Zhang X; Pan X; Zang L; Xu L Cytokine; 2010 Dec; 52(3):210-4. PubMed ID: 20667748 [TBL] [Abstract][Full Text] [Related]
13. Ca2+/calmodulin and cyclic 3,5' adenosine monophosphate control movement of secretory granules through protein phosphorylation/dephosphorylation in the pancreatic beta-cell. Hisatomi M; Hidaka H; Niki I Endocrinology; 1996 Nov; 137(11):4644-9. PubMed ID: 8895328 [TBL] [Abstract][Full Text] [Related]
14. Interleukin-1 beta and reactive oxygen species mediate activation of c-Jun NH2-terminal kinases, in human epithelial cells, by two independent pathways. Roberts ML; Cowsert LM Biochem Biophys Res Commun; 1998 Oct; 251(1):166-72. PubMed ID: 9790925 [TBL] [Abstract][Full Text] [Related]
15. Increased insulin receptor substrate 1 serine phosphorylation and stress-activated protein kinase/c-Jun N-terminal kinase activation associated with vascular insulin resistance in spontaneously hypertensive rats. Sugita M; Sugita H; Kaneki M Hypertension; 2004 Oct; 44(4):484-9. PubMed ID: 15302844 [TBL] [Abstract][Full Text] [Related]
16. p38 MAPK and Ca2+ contribute to hydrogen peroxide-induced increase of permeability in vascular endothelial cells but ERK does not. Niwa K; Inanami O; Ohta T; Ito S; Karino T; Kuwabara M Free Radic Res; 2001 Nov; 35(5):519-27. PubMed ID: 11767410 [TBL] [Abstract][Full Text] [Related]
17. Distinct roles of Ca2+, calmodulin, and protein kinase C in H2O2-induced activation of ERK1/2, p38 MAPK, and protein kinase B signaling in vascular smooth muscle cells. Blanc A; Pandey NR; Srivastava AK Antioxid Redox Signal; 2004 Apr; 6(2):353-66. PubMed ID: 15025937 [TBL] [Abstract][Full Text] [Related]
18. Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Sharfi H; Eldar-Finkelman H Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E307-15. PubMed ID: 18029441 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of feedback regulation of insulin receptor substrate-1 phosphorylation in primary adipocytes. Hers I; Tavaré JM Biochem J; 2005 Jun; 388(Pt 2):713-20. PubMed ID: 15713122 [TBL] [Abstract][Full Text] [Related]
20. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. Aikawa R; Komuro I; Yamazaki T; Zou Y; Kudoh S; Tanaka M; Shiojima I; Hiroi Y; Yazaki Y J Clin Invest; 1997 Oct; 100(7):1813-21. PubMed ID: 9312182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]