These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11226234)

  • 41. Role of an N(cap) residue in determining the stability and operator-binding affinity of Arc repressor.
    Anderson TA; Sauer RT
    Biophys Chem; 2003; 100(1-3):341-50. PubMed ID: 12646376
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA-induced conformational changes in bacteriophage 434 repressor.
    Ciubotaru M; Bright FV; Ingersoll CM; Koudelka GB
    J Mol Biol; 1999 Dec; 294(4):859-73. PubMed ID: 10588892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA binding specificity of the Arc and Mnt repressors is determined by a short region of N-terminal residues.
    Knight KL; Sauer RT
    Proc Natl Acad Sci U S A; 1989 Feb; 86(3):797-801. PubMed ID: 2644643
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DNA-based loss of specificity mutations. Effects of DNA sequence on the contacted and non-contacted base preferences of bacteriophage P22 repressor.
    Hilchey SP; Koudelka GB
    J Biol Chem; 1997 Jan; 272(3):1646-53. PubMed ID: 8999840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proton-linked contributions to site-specific interactions of lambda cI repressor and OR.
    Senear DF; Ackers GK
    Biochemistry; 1990 Jul; 29(28):6568-77. PubMed ID: 2168735
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-assembly of bacteriophage lambda cI repressor: effects of single-site mutations on the monomer-dimer equilibrium.
    Burz DS; Beckett D; Benson N; Ackers GK
    Biochemistry; 1994 Jul; 33(28):8399-405. PubMed ID: 8031775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specificity determinants for the interaction of lambda repressor and P22 repressor dimers.
    Whipple FW; Kuldell NH; Cheatham LA; Hochschild A
    Genes Dev; 1994 May; 8(10):1212-23. PubMed ID: 7926725
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scanning mutagenesis of the Arc repressor as a functional probe of operator recognition.
    Brown BM; Milla ME; Smith TL; Sauer RT
    Nat Struct Biol; 1994 Mar; 1(3):164-8. PubMed ID: 7656034
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dimer-dimer interfaces of the lambda-repressor are different in liganded and free states.
    Bandyopadhyay S; Mukhopadhyay C; Roy S
    Biochemistry; 1996 Apr; 35(15):5033-40. PubMed ID: 8664296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computer-aided discrimination between active and inactive mutants of the N-terminal domain of the bacteriophage lambda repressor.
    Kombo DC; NĂ©methy G; Gibson KD; Rackovsky S; Scheraga HA
    J Mol Biol; 1996 Mar; 256(3):517-32. PubMed ID: 8604135
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular dynamics simulation in solvent of the bacteriophage 434 cI repressor protein DNA binding domain amino acids (R1-69) in complex with its cognate operator (OR1) DNA sequence.
    Harris LF; Sullivan MR; Popken-Harris PD
    J Biomol Struct Dyn; 1999 Aug; 17(1):1-17. PubMed ID: 10496417
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-binding proteins.
    Breg JN; van Opheusden JH; Burgering MJ; Boelens R; Kaptein R
    Nature; 1990 Aug; 346(6284):586-9. PubMed ID: 2377232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Origins of DNA-binding specificity: role of protein contacts with the DNA backbone.
    Schildbach JF; Karzai AW; Raumann BE; Sauer RT
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):811-7. PubMed ID: 9927650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation of lambda repressor mutants with defects in cooperative operator binding.
    Beckett D; Burz DS; Ackers GK; Sauer RT
    Biochemistry; 1993 Sep; 32(35):9073-9. PubMed ID: 8369279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA-stimulated assembly of oligomeric bacteriophage 434 repressor: evidence for cooperative binding by recruitment.
    Ciubotaru M; Koudelka GB
    Biochemistry; 2003 Apr; 42(14):4253-64. PubMed ID: 12680780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of the lambda repressor C-terminal domain octamer.
    Bell CE; Lewis M
    J Mol Biol; 2001 Dec; 314(5):1127-36. PubMed ID: 11743728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Site-specific enthalpic regulation of DNA transcription at bacteriophage lambda OR.
    Koblan KS; Ackers GK
    Biochemistry; 1992 Jan; 31(1):57-65. PubMed ID: 1531023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Are buried salt bridges important for protein stability and conformational specificity?
    Waldburger CD; Schildbach JF; Sauer RT
    Nat Struct Biol; 1995 Feb; 2(2):122-8. PubMed ID: 7749916
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ.
    He YY; Garvie CW; Elworthy S; Manfield IW; McNally T; Lawrenson ID; Phillips SE; Stockley PG
    J Mol Biol; 2002 Jun; 320(1):39-53. PubMed ID: 12079333
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutations affecting cooperative DNA binding of phage HK022 CI repressor.
    Mao C; Little JW
    J Mol Biol; 1998 May; 279(1):31-48. PubMed ID: 9636698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.