These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 11226325)
1. In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Manley GA; Kirk DL; Köppl C; Yates GK Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2826-31. PubMed ID: 11226325 [TBL] [Abstract][Full Text] [Related]
3. Evidence for an active process and a cochlear amplifier in nonmammals. Manley GA J Neurophysiol; 2001 Aug; 86(2):541-9. PubMed ID: 11495929 [TBL] [Abstract][Full Text] [Related]
4. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Chan DK; Hudspeth AJ Nat Neurosci; 2005 Feb; 8(2):149-55. PubMed ID: 15643426 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae. Manley GA Hear Res; 2006 Feb; 212(1-2):33-47. PubMed ID: 16307854 [TBL] [Abstract][Full Text] [Related]
6. Active hair bundle movements and the cochlear amplifier. Ricci A J Am Acad Audiol; 2003 Aug; 14(6):325-38. PubMed ID: 14552426 [TBL] [Abstract][Full Text] [Related]
7. Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea. Eatock RA; Saeki M; Hutzler MJ J Neurosci; 1993 Apr; 13(4):1767-83. PubMed ID: 8385208 [TBL] [Abstract][Full Text] [Related]
8. The cellular basis of hearing: the biophysics of hair cells. Hudspeth AJ Science; 1985 Nov; 230(4727):745-52. PubMed ID: 2414845 [TBL] [Abstract][Full Text] [Related]
9. A micromechanical contribution to cochlear tuning and tonotopic organization. Holton T; Hudspeth AJ Science; 1983 Nov; 222(4623):508-10. PubMed ID: 6623089 [TBL] [Abstract][Full Text] [Related]
10. Rapid mechanical stimulation of inner-ear hair cells by photonic pressure. Abeytunge S; Gianoli F; Hudspeth AJ; Kozlov AS Elife; 2021 Jul; 10():. PubMed ID: 34227465 [TBL] [Abstract][Full Text] [Related]
11. The physics of hearing: fluid mechanics and the active process of the inner ear. Reichenbach T; Hudspeth AJ Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839 [TBL] [Abstract][Full Text] [Related]
13. Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification? Peng AW; Ricci AJ Hear Res; 2011 Mar; 273(1-2):109-22. PubMed ID: 20430075 [TBL] [Abstract][Full Text] [Related]
14. Clues to the cochlear amplifier from the turtle ear. Fettiplace R; Ricci AJ; Hackney CM Trends Neurosci; 2001 Mar; 24(3):169-75. PubMed ID: 11182457 [TBL] [Abstract][Full Text] [Related]
15. Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog. Bozovic D; Hudspeth AJ Proc Natl Acad Sci U S A; 2003 Feb; 100(3):958-63. PubMed ID: 12538849 [TBL] [Abstract][Full Text] [Related]
16. Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea. Frishkopf LS; DeRosier DJ Hear Res; 1983 Dec; 12(3):393-404. PubMed ID: 6668260 [TBL] [Abstract][Full Text] [Related]
17. ["The cochlear amplifier". A crucial component of the hearing mechanism]. Ulfendahl M Lakartidningen; 1997 Nov; 94(45):4077-80. PubMed ID: 9424498 [TBL] [Abstract][Full Text] [Related]
20. The effect of hair bundle shape on hair bundle hydrodynamics of non-mammalian inner ear hair cells for the full frequency range. Shatz LF Hear Res; 2004 Sep; 195(1-2):41-53. PubMed ID: 15350278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]