These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11226330)

  • 21. Contribution of protons to post-ischemic Na(+) and Ca(2+) overload and left ventricular mechanical dysfunction.
    Clanachan AS
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S141-S148. PubMed ID: 16686669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The sodium-hydrogen exchange system in the heart: its role in ischemic and reperfusion injury and therapeutic implications.
    Karmazyn M
    Can J Cardiol; 1996 Oct; 12(10):1074-82. PubMed ID: 9191501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of intracellular pH in capacitated human spermatozoa by a Na+/H+ exchanger.
    Garcia MA; Meizel S
    Mol Reprod Dev; 1999 Feb; 52(2):189-95. PubMed ID: 9890750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aldehyde dehydrogenase type 2 activation by adenosine and histamine inhibits ischemic norepinephrine release in cardiac sympathetic neurons: mediation by protein kinase Cε.
    Robador PA; Seyedi N; Chan NY; Koda K; Levi R
    J Pharmacol Exp Ther; 2012 Oct; 343(1):97-105. PubMed ID: 22761303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bradykinin promotes ischemic norepinephrine release in guinea pig and human hearts.
    Hatta E; Maruyama R; Marshall SJ; Imamura M; Levi R
    J Pharmacol Exp Ther; 1999 Mar; 288(3):919-27. PubMed ID: 10027827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sympatho-adrenergic activation of the ischemic myocardium and its arrhythmogenic impact.
    Schömig A; Richardt G; Kurz T
    Herz; 1995 Jun; 20(3):169-86. PubMed ID: 7635399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bradykinin activates a cross-signaling pathway between sensory and adrenergic nerve endings in the heart: a novel mechanism of ischemic norepinephrine release?
    Seyedi N; Maruyama R; Levi R
    J Pharmacol Exp Ther; 1999 Aug; 290(2):656-63. PubMed ID: 10411575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic potential of H(3)-receptor agonists in myocardial infarction.
    Mackins CJ; Levi R
    Expert Opin Investig Drugs; 2000 Nov; 9(11):2537-42. PubMed ID: 11060818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NHE-1 and NBC during pseudo-ischemia/reperfusion in rabbit ventricular myocytes.
    van Borren MM; Baartscheer A; Wilders R; Ravesloot JH
    J Mol Cell Cardiol; 2004 Aug; 37(2):567-77. PubMed ID: 15276026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Na(+)/H(+) exchanger is a major pH regulator in GABAergic presynaptic nerve terminals synapsing onto rat CA3 pyramidal neurons.
    Jang IS; Brodwick MS; Wang ZM; Jeong HJ; Choi BJ; Akaike N
    J Neurochem; 2006 Nov; 99(4):1224-36. PubMed ID: 17018119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow cytometric kinetic assay of the activity of Na+/H+ antiporter in mammalian cells.
    Dolz M; O'Connor JE; Lequerica JL
    Cytometry A; 2004 Oct; 61(2):99-104. PubMed ID: 15382148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of bicarbonate transport protects embryonic heart against reoxygenation-induced dysfunction.
    Meiltz A; Kucera P; de Ribaupierre Y; Raddatz E
    J Mol Cell Cardiol; 1998 Feb; 30(2):327-35. PubMed ID: 9515009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen sulfide regulates Na+/H+ exchanger activity via stimulation of phosphoinositide 3-kinase/Akt and protein kinase G pathways.
    Hu LF; Li Y; Neo KL; Yong QC; Lee SW; Tan BK; Bian JS
    J Pharmacol Exp Ther; 2011 Nov; 339(2):726-35. PubMed ID: 21865440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Stimulation of the alpha-1 adrenergic receptors during simulated reperfusion after myocardial acidosis. The evidence for an arrhythmogenic role of the Na+/H+ exchanger].
    Gambassi G
    Cardiologia; 1993 Jan; 38(1):25-36. PubMed ID: 8388775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium-hydrogen exchangers (NHE) in human cardiovascular diseases: interfering strategies and their therapeutic applications.
    Madonna R; De Caterina R
    Vascul Pharmacol; 2013; 59(5-6):127-30. PubMed ID: 24140414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salvaging the Ischemic Heart: Gi-Coupled Receptors in Mast Cells Activate a PKCε/ALDH2 Pathway Providing Anti-RAS Cardioprotection.
    Marino A; Levi R
    Curr Med Chem; 2018; 25(34):4416-4431. PubMed ID: 29446730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Na+/H+ exchanger: an emerging therapeutic target in cardiovascular disorders.
    Sharma A; Singh M
    Drugs Today (Barc); 2000 Nov; 36(11):793-802. PubMed ID: 12845338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging roles of Na⁺/H⁺ exchangers in epilepsy and developmental brain disorders.
    Zhao H; Carney KE; Falgoust L; Pan JW; Sun D; Zhang Z
    Prog Neurobiol; 2016; 138-140():19-35. PubMed ID: 26965387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Therapeutic potential of Na-H exchange inhibitors for the treatment of heart failure.
    Karmazyn M
    Expert Opin Investig Drugs; 2001 May; 10(5):835-43. PubMed ID: 11322861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endothelin-1 and norepinephrine overflow from cardiac sympathetic nerve endings in myocardial ischemia.
    Tawa M; Yamamoto S; Ohkita M; Matsumura Y
    Cardiol Res Pract; 2012; 2012():789071. PubMed ID: 22792506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.