These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 11226519)
1. Evidence of an immunologic mechanism behind the therapeutical effects of arsenic trioxide (As(2)O(3)) on myeloma cells. Deaglio S; Canella D; Baj G; Arnulfo A; Waxman S; Malavasi F Leuk Res; 2001 Mar; 25(3):227-35. PubMed ID: 11226519 [TBL] [Abstract][Full Text] [Related]
2. Co-biomodulation with arsenic trioxide in multiple myeloma. Gallagher RE Leuk Res; 2001 Mar; 25(3):237-9. PubMed ID: 11226520 [No Abstract] [Full Text] [Related]
3. Role of CD38 and its ligand in the regulation of MHC-nonrestricted cytotoxic T cells. Cesano A; Visonneau S; Deaglio S; Malavasi F; Santoli D J Immunol; 1998 Feb; 160(3):1106-15. PubMed ID: 9570523 [TBL] [Abstract][Full Text] [Related]
4. Trials of arsenic trioxide in multiple myeloma. Hussein MA Cancer Control; 2003; 10(5):370-4. PubMed ID: 14581891 [TBL] [Abstract][Full Text] [Related]
5. Arsenic trioxide: a new immunomodulatory agent in the management of multiple myeloma. Hussein MA Med Oncol; 2001; 18(4):239-42. PubMed ID: 11918450 [TBL] [Abstract][Full Text] [Related]
6. Growth inhibition and apoptosis of myeloma cells by the CDK inhibitor flavopiridol. Semenov I; Akyuz C; Roginskaya V; Chauhan D; Corey SJ Leuk Res; 2002 Mar; 26(3):271-80. PubMed ID: 11792416 [TBL] [Abstract][Full Text] [Related]
7. NAD degradation and regulation of CD38 expression by human monocytes/macrophages. Pfister M; Ogilvie A; da Silva CP; Grahnert A; Guse AH; Hauschildt S Eur J Biochem; 2001 Nov; 268(21):5601-8. PubMed ID: 11683883 [TBL] [Abstract][Full Text] [Related]
9. [Detection of myeloma cells in the peripheral blood using flow cytometry]. Adam Z; Klabusay M; Vorlícek J; Hájek R Vnitr Lek; 1997 Sep; 43(9):592-8. PubMed ID: 9750468 [TBL] [Abstract][Full Text] [Related]
10. All-trans-retinoic acid up-regulates CD38 but not c-Kit antigens on human marrow CD34+ cells without recruitment into cell cycle. Herault O; Domenech J; Degenne M; Bremond JL; Sensebe L; Bernard MC; Binet C; Colombat P Br J Haematol; 1998 Nov; 103(2):343-50. PubMed ID: 9827903 [TBL] [Abstract][Full Text] [Related]
11. CD38/ADP-ribosyl cyclase: A new role in the regulation of osteoclastic bone resorption. Sun L; Adebanjo OA; Moonga BS; Corisdeo S; Anandatheerthavarada HK; Biswas G; Arakawa T; Hakeda Y; Koval A; Sodam B; Bevis PJ; Moser AJ; Lai FA; Epstein S; Troen BR; Kumegawa M; Zaidi M J Cell Biol; 1999 Sep; 146(5):1161-72. PubMed ID: 10477767 [TBL] [Abstract][Full Text] [Related]
13. Human CD38 is an authentic NAD(P)+ glycohydrolase. Berthelier V; Tixier JM; Muller-Steffner H; Schuber F; Deterre P Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1383-90. PubMed ID: 9494110 [TBL] [Abstract][Full Text] [Related]
14. Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Altomonte M; Gloghini A; Bertola G; Gasparollo A; Carbone A; Ferrone S; Maio M Cancer Res; 1993 Jul; 53(14):3343-8. PubMed ID: 7686816 [TBL] [Abstract][Full Text] [Related]
15. Arsenic trioxide in multiple myeloma: rationale and future directions. Anderson KC; Boise LH; Louie R; Waxman S Cancer J; 2002; 8(1):12-25. PubMed ID: 11895198 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of ADP-ribosyl cyclase activity of the cell surface antigen CD38 by zinc ions resulting from inhibition of its NAD+ glycohydrolase activity. Kukimoto I; Hoshino S; Kontani K; Inageda K; Nishina H; Takahashi K; Katada T Eur J Biochem; 1996 Jul; 239(1):177-82. PubMed ID: 8706705 [TBL] [Abstract][Full Text] [Related]
17. Human CD38: a (r)evolutionary story of enzymes and receptors. Deaglio S; Mehta K; Malavasi F Leuk Res; 2001 Jan; 25(1):1-12. PubMed ID: 11137554 [TBL] [Abstract][Full Text] [Related]
18. Altered expression of P-glycoprotein and cellular adhesion molecules on human multi-drug-resistant tumor cells does not affect their susceptibility to NK- and LAK-mediated cytotoxicity. Scheper RJ; Dalton WS; Grogan TM; Schlosser A; Bellamy WT; Taylor CW; Scuderi P; Spier C Int J Cancer; 1991 Jun; 48(4):562-7. PubMed ID: 1710609 [TBL] [Abstract][Full Text] [Related]
19. Susceptibility of acute myelogenous leukemia blasts to lysis by lymphokine-activated killer (LAK) cells and its clinical relevance. Archimbaud E; Thomas X; Campos L; Fiere D; Doré JF Leuk Res; 1992; 16(6-7):673-80. PubMed ID: 1378919 [TBL] [Abstract][Full Text] [Related]
20. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Jourdan M; Ferlin M; Legouffe E; Horvathova M; Liautard J; Rossi JF; Wijdenes J; Brochier J; Klein B Br J Haematol; 1998 Mar; 100(4):637-46. PubMed ID: 9531328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]