These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 11226666)

  • 41. Exposure to behaviourally relevant odour reveals differential characteristics in rat central olfactory pathways as studied through oscillatory activities.
    Chabaud P; Ravel N; Wilson DA; Mouly AM; Vigouroux M; Farget V; Gervais R
    Chem Senses; 2000 Oct; 25(5):561-73. PubMed ID: 11015328
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Olfactory learning-induced enhancement of the predisposition for LTP induction.
    Cohen Y; Avramoav S; Barkai E; Maroun M
    Learn Mem; 2011 Sep; 18(9):594-7. PubMed ID: 21868439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The effect of the perfusates from tetanized donor slices on the induction of long-term potentiation in recipient slices].
    Mokrushin AA; Karpova IV
    Fiziol Zh Im I M Sechenova; 1994 Mar; 80(3):8-12. PubMed ID: 7527712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation.
    Fletcher ML; Chen WR
    Learn Mem; 2010 Nov; 17(11):561-70. PubMed ID: 20980444
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expression of Fos in the piriform cortex after acquisition of olfactory learning: an immunohistochemical study in the rat.
    Datiche F; Roullet F; Cattarelli M
    Brain Res Bull; 2001 May; 55(1):95-9. PubMed ID: 11427343
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Response dynamics of entorhinal cortex in awake, anesthetized, and bulbotomized rats.
    Ahrens KF; Freeman WJ
    Brain Res; 2001 Aug; 911(2):193-202. PubMed ID: 11511390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An olfactory input to the hippocampus of the cat: field potential analysis.
    Habets AM; Lopes Da Silva FH; Mollevanger WJ
    Brain Res; 1980 Jan; 182(1):47-64. PubMed ID: 7350993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional coupling in rat central olfactory pathways: a coherence analysis.
    Chabaud P; Ravel N; Wilson DA; Gervais R
    Neurosci Lett; 1999 Nov; 276(1):17-20. PubMed ID: 10586964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Central olfactory connections in the macaque monkey.
    Carmichael ST; Clugnet MC; Price JL
    J Comp Neurol; 1994 Aug; 346(3):403-34. PubMed ID: 7527806
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Converging inputs to the entorhinal cortex from the piriform cortex and medial septum: facilitation and current source density analysis.
    Chapman CA; Racine RJ
    J Neurophysiol; 1997 Nov; 78(5):2602-15. PubMed ID: 9356410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polysynaptic activation of the dentate gyrus of the hippocampal formation: an olfactory input via the lateral entorhinal cortex.
    Wilson RC; Steward O
    Exp Brain Res; 1978 Nov; 33(3-4):523-34. PubMed ID: 215436
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup.
    Morrison GL; Fontaine CJ; Harley CW; Yuan Q
    J Neurophysiol; 2013 Jul; 110(1):141-52. PubMed ID: 23576704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Olfactory cortical adaptation facilitates detection of odors against background.
    Kadohisa M; Wilson DA
    J Neurophysiol; 2006 Mar; 95(3):1888-96. PubMed ID: 16251260
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The neurotoxins colchicine and kainic acid block odor-induced fast waves and olfactory-evoked potentials in the dentate gyrus of the behaving rat.
    Heale VR; Vanderwolf CH; Leung LS
    Brain Res; 1995 Sep; 690(2):157-66. PubMed ID: 8535832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Convergence of olfactory and gustatory connections onto the endopiriform nucleus in the rat.
    Fu W; Sugai T; Yoshimura H; Onoda N
    Neuroscience; 2004; 126(4):1033-41. PubMed ID: 15207336
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of D-AP5 and NMDA microiontophoresis on associative learning in the barrel cortex of awake rats.
    Maalouf M; Dykes RW; Miasnikov AA
    Brain Res; 1998 May; 793(1-2):149-68. PubMed ID: 9630587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. What a nostril knows: olfactory nerve-evoked AMPA responses increase while NMDA responses decrease at 24-h post-training for lateralized odor preference memory in neonate rat.
    Yuan Q; Harley CW
    Learn Mem; 2012 Feb; 19(2):50-3. PubMed ID: 22240324
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A study of the effects of noradrenaline in the rat olfactory bulb using evoked field potential response.
    Mouly AM; Elaagouby A; Ravel N
    Brain Res; 1995 May; 681(1-2):47-57. PubMed ID: 7552291
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Scopolamine blocks olfaction-induced fast waves but not olfactory evoked potentials in the dentate gyrus.
    Heale VR; Vanderwolf CH
    Behav Brain Res; 1995 Apr; 68(1):57-64. PubMed ID: 7619306
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Orchestration of Hippocampal Information Encoding by the Piriform Cortex.
    Strauch C; Manahan-Vaughan D
    Cereb Cortex; 2020 Jan; 30(1):135-147. PubMed ID: 31220213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.