These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 11226685)
1. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity. Tacconi S; Carletti R; Bunnemann B; Plumpton C; Merlo Pich E; Terstappen GC Neuroscience; 2001; 102(1):209-15. PubMed ID: 11226685 [TBL] [Abstract][Full Text] [Related]
2. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. Wolfart J; Neuhoff H; Franz O; Roeper J J Neurosci; 2001 May; 21(10):3443-56. PubMed ID: 11331374 [TBL] [Abstract][Full Text] [Related]
3. Distribution, neuronal colocalization, and 17beta-E2 modulation of small conductance calcium-activated K(+) channel (SK3) mRNA in the guinea pig brain. Bosch MA; Kelly MJ; Rønnekleiv OK Endocrinology; 2002 Mar; 143(3):1097-107. PubMed ID: 11861537 [TBL] [Abstract][Full Text] [Related]
4. Regional distribution of SK3 mRNA-containing neurons in the adult and adolescent rat ventral midbrain and their relationship to dopamine-containing cells. Sarpal D; Koenig JI; Adelman JP; Brady D; Prendeville LC; Shepard PD Synapse; 2004 Aug; 53(2):104-13. PubMed ID: 15170822 [TBL] [Abstract][Full Text] [Related]
5. Molecular determinants of Ca2+-dependent K+ channel function in rat dorsal vagal neurones. Pedarzani P; Kulik A; Muller M; Ballanyi K; Stocker M J Physiol; 2000 Sep; 527 Pt 2(Pt 2):283-90. PubMed ID: 10970429 [TBL] [Abstract][Full Text] [Related]
7. Presynaptic localization of the small conductance calcium-activated potassium channel SK3 at the neuromuscular junction. Roncarati R; Di Chio M; Sava A; Terstappen GC; Fumagalli G Neuroscience; 2001; 104(1):253-62. PubMed ID: 11311547 [TBL] [Abstract][Full Text] [Related]
8. SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones. Hosseini R; Benton DC; Dunn PM; Jenkinson DH; Moss GW J Physiol; 2001 Sep; 535(Pt 2):323-34. PubMed ID: 11533126 [TBL] [Abstract][Full Text] [Related]
9. Developmental expression of the small-conductance Ca(2+)-activated potassium channel SK2 in the rat retina. Klöcker N; Oliver D; Ruppersberg JP; Knaus HG; Fakler B Mol Cell Neurosci; 2001 Mar; 17(3):514-20. PubMed ID: 11273646 [TBL] [Abstract][Full Text] [Related]
10. Rat GnRH neurons exhibit large conductance voltage- and Ca2+-Activated K+ (BK) currents and express BK channel mRNAs. Hiraizumi Y; Nishimura I; Ishii H; Tanaka N; Takeshita T; Sakuma Y; Kato M J Physiol Sci; 2008 Feb; 58(1):21-9. PubMed ID: 18177544 [TBL] [Abstract][Full Text] [Related]
11. Functional characteristics of two BKCa channel variants differentially expressed in rat brain tissues. Ha TS; Jeong SY; Cho SW; Jeon Hk; Roh GS; Choi WS; Park CS Eur J Biochem; 2000 Feb; 267(3):910-8. PubMed ID: 10651830 [TBL] [Abstract][Full Text] [Related]
12. Differential expression of the alpha and beta subunits of the large-conductance calcium-activated potassium channel: implication for channel diversity. Chang CP; Dworetzky SI; Wang J; Goldstein ME Brain Res Mol Brain Res; 1997 Apr; 45(1):33-40. PubMed ID: 9105668 [TBL] [Abstract][Full Text] [Related]
13. Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus. Armstrong WE; Rubrum A; Teruyama R; Bond CT; Adelman JP J Comp Neurol; 2005 Oct; 491(3):175-85. PubMed ID: 16134141 [TBL] [Abstract][Full Text] [Related]
14. Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. Knaus HG; Schwarzer C; Koch RO; Eberhart A; Kaczorowski GJ; Glossmann H; Wunder F; Pongs O; Garcia ML; Sperk G J Neurosci; 1996 Feb; 16(3):955-63. PubMed ID: 8558264 [TBL] [Abstract][Full Text] [Related]
15. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Sailer CA; Kaufmann WA; Marksteiner J; Knaus HG Mol Cell Neurosci; 2004 Jul; 26(3):458-69. PubMed ID: 15234350 [TBL] [Abstract][Full Text] [Related]
16. Expression of the small conductance Ca2+-activated K+ channel, SK3, in the olfactory ensheathing glial cells of rat brain. Fujita A; Takeuchi T; Hanai J; Hata F Cell Tissue Res; 2003 Aug; 313(2):187-93. PubMed ID: 12883996 [TBL] [Abstract][Full Text] [Related]
17. Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. Serôdio P; Rudy B J Neurophysiol; 1998 Feb; 79(2):1081-91. PubMed ID: 9463463 [TBL] [Abstract][Full Text] [Related]
18. Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity. D'hoedt D; Hirzel K; Pedarzani P; Stocker M J Biol Chem; 2004 Mar; 279(13):12088-92. PubMed ID: 14761961 [TBL] [Abstract][Full Text] [Related]
19. Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia. Tomita H; Shakkottai VG; Gutman GA; Sun G; Bunney WE; Cahalan MD; Chandy KG; Gargus JJ Mol Psychiatry; 2003 May; 8(5):524-35, 460. PubMed ID: 12808432 [TBL] [Abstract][Full Text] [Related]
20. Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Boettger MK; Till S; Chen MX; Anand U; Otto WR; Plumpton C; Trezise DJ; Tate SN; Bountra C; Coward K; Birch R; Anand P Brain; 2002 Feb; 125(Pt 2):252-63. PubMed ID: 11844726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]