BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11227796)

  • 1. Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: a biochemical study in situ.
    Kraft T; Hornemann T; Stolz M; Nier V; Wallimann T
    J Muscle Res Cell Motil; 2000; 21(7):691-703. PubMed ID: 11227796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve.
    Wegmann G; Zanolla E; Eppenberger HM; Wallimann T
    J Muscle Res Cell Motil; 1992 Aug; 13(4):420-35. PubMed ID: 1401038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK.
    Stolz M; Wallimann T
    J Cell Sci; 1998 May; 111 ( Pt 9)():1207-16. PubMed ID: 9547297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band.
    Stolz M; Kraft T; Wallimann T
    Eur J Cell Biol; 1998 Sep; 77(1):1-9. PubMed ID: 9808283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presence of enolase in the M-band of skeletal muscle and possible indirect interaction with the cytosolic muscle isoform of creatine kinase.
    Foucault G; Vacher M; Merkulova T; Keller A; Arrio-Dupont M
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):115-21. PubMed ID: 9931306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibration and exchange of fluorescently labeled molecules in skinned skeletal muscle fibers visualized by confocal microscopy.
    Kraft T; Messerli M; Rothen-Rutishauser B; Perriard JC; Wallimann T; Brenner B
    Biophys J; 1995 Oct; 69(4):1246-58. PubMed ID: 8534795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcomeric binding pattern of exogenously added intact caldesmon and its C-terminal 20-kDa fragment in skinned fibers of skeletal muscle.
    Frisbie SM; Reedy MC; Yu LC; Brenner B; Chalovich JM; Kraft T
    J Muscle Res Cell Motil; 1999 Apr; 20(3):291-303. PubMed ID: 10471992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle-type 6-phosphofructo-1-kinase and aldolase associate conferring catalytic advantages for both enzymes.
    Marcondes MC; Sola-Penna M; Torres Rda S; Zancan P
    IUBMB Life; 2011 Jun; 63(6):435-45. PubMed ID: 21698747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure.
    Bigard AX; Boehm E; Veksler V; Mateo P; Anflous K; Ventura-Clapier R
    J Mol Cell Cardiol; 1998 Nov; 30(11):2391-401. PubMed ID: 9925374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of muscle glycolytic enzymes with thin filament proteins.
    Bronstein WW; Knull HR
    Can J Biochem; 1981 Jul; 59(7):494-9. PubMed ID: 7296340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice.
    Dzeja PP; Terzic A; Wieringa B
    Mol Cell Biochem; 2004; 256-257(1-2):13-27. PubMed ID: 14977167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintained coupling of oxidative phosphorylation to creatine kinase activity in sarcomeric mitochondrial creatine kinase-deficient mice.
    Boehm E; Veksler V; Mateo P; Lenoble C; Wieringa B; Ventura-Clapier R
    J Mol Cell Cardiol; 1998 May; 30(5):901-12. PubMed ID: 9618231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the association of glycolytic enzymes with structural proteins of skeletal muscle.
    Clarke FM; Masters CJ
    Biochim Biophys Acta; 1975 Jan; 381(1):37-46. PubMed ID: 1111588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular enzyme binding and the regulation of glycolysis in anoxic turtle brain.
    Duncan JA; Storey KB
    Am J Physiol; 1992 Mar; 262(3 Pt 2):R517-23. PubMed ID: 1532698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein.
    Hornemann T; Kempa S; Himmel M; Hayess K; Fürst DO; Wallimann T
    J Mol Biol; 2003 Sep; 332(4):877-87. PubMed ID: 12972258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance purification of glycolytic enzymes and creatine kinase from chicken breast muscle and preparation of their specific immunological probes.
    Reiss NA; Schwartz RJ
    Prep Biochem; 1987; 17(2):157-72. PubMed ID: 3037510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane.
    Campanella ME; Chu H; Low PS
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2402-7. PubMed ID: 15701694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative evaluation of the effect of enzyme complexes on the glycolytic rate in vivo: mathematical modeling of the glycolytic complex.
    Brooks SP; Storey KB
    J Theor Biol; 1991 Apr; 149(3):361-75. PubMed ID: 2062101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional equivalence of creatine kinase isoforms in mouse skeletal muscle.
    Roman BB; Wieringa B; Koretsky AP
    J Biol Chem; 1997 Jul; 272(28):17790-4. PubMed ID: 9211932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium regulation of the glycolytic pathway and the enzymes involved.
    Garfinkel L; Garfinkel D
    Magnesium; 1985; 4(2-3):60-72. PubMed ID: 2931560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.