These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11227902)

  • 1. Testosterone depresses innate and acquired resistance to ticks in natural rodent hosts: a force for aggregated distributions of parasites.
    Hughes VL; Randolph SE
    J Parasitol; 2001 Feb; 87(1):49-54. PubMed ID: 11227902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi.
    Dizij A; Kurtenbach K
    Parasite Immunol; 1995 Apr; 17(4):177-83. PubMed ID: 7624158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testosterone increases the transmission potential of tick-borne parasites.
    Hughes VL; Randolph SE
    Parasitology; 2001 Oct; 123(Pt 4):365-71. PubMed ID: 11676368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-dependent acquired resistance to ticks in natural hosts, independent of concurrent infection with Babesia microti.
    Randolph SE
    Parasitology; 1994 May; 108 ( Pt 4)():413-9. PubMed ID: 8008455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts.
    Labuda M; Kozuch O; Zuffová E; Elecková E; Hails RS; Nuttall PA
    Virology; 1997 Aug; 235(1):138-43. PubMed ID: 9300045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance.
    Humair PF; Rais O; Gern L
    Parasitology; 1999 Jan; 118 ( Pt 1)():33-42. PubMed ID: 10070659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of resistance against the tick Ixodes ricinus in two related passerine bird species.
    Heylen DJ; Madder M; Matthysen E
    Int J Parasitol; 2010 Feb; 40(2):183-91. PubMed ID: 19747483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduced Siberian chipmunks are more heavily infested by ixodid ticks than are native bank voles in a suburban forest in France.
    Pisanu B; Marsot M; Marmet J; Chapuis JL; Réale D; Vourc'h G
    Int J Parasitol; 2010 Sep; 40(11):1277-83. PubMed ID: 20406644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host preferences and temporal trends of the tick Ixodes angustus in north-central Alberta.
    Sorensen TC; Moses RA
    J Parasitol; 1998 Oct; 84(5):902-6. PubMed ID: 9794628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundance of wild rodents, ticks and environmental risk of Lyme borreliosis: a longitudinal study in an area of Mazury Lakes district of Poland.
    Siński E; Pawełczyk A; Bajer A; Behnke J
    Ann Agric Environ Med; 2006; 13(2):295-300. PubMed ID: 17196004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infestation of mammals by Ixodes ricinus ticks (Acari: Ixodidae) in south-central Sweden.
    Tälleklint L; Jaenson TG
    Exp Appl Acarol; 1997 Dec; 21(12):755-71. PubMed ID: 9423270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population regulation in ticks: the role of acquired resistance in natural and unnatural hosts.
    Randolph SE
    Parasitology; 1979 Aug; 79(1):141-56. PubMed ID: 542316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host substitution by Ixodes persulcatus (Acari: Ixodidae) larvae in the years of deep depression in the abundance of small mammals.
    Uspensky I; Rubina M
    Folia Parasitol (Praha); 1992; 39(2):171-6. PubMed ID: 1644364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals.
    Humair PF; Turrian N; Aeschilimann A; Gern L
    Folia Parasitol (Praha); 1993; 40(1):65-70. PubMed ID: 8325567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the distribution of larval blacklegged ticks on rodent hosts.
    Shaw MT; Keesing F; McGrail R; Ostfeld RS
    Am J Trop Med Hyg; 2003 Apr; 68(4):447-52. PubMed ID: 12875294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple epidemiological model predicts the relationships between prevalence and abundance in ixodid ticks.
    Stanko M; Krasnov BR; Miklisova D; Morand S
    Parasitology; 2007 Jan; 134(Pt 1):59-68. PubMed ID: 17032480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tick-borne Great Island Virus: (II) Impact of age-related acquired immunity on transmission in a natural seabird host.
    Nunn MA; Barton TR; Wanless S; Hails RS; Harris MP; Nuttall PA
    Parasitology; 2006 Feb; 132(Pt 2):241-53. PubMed ID: 16197591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential distribution of immature Ixodes dammini (Acari: Ixodidae) on rodent hosts.
    Davidar P; Wilson M; Ribeiro JM
    J Parasitol; 1989 Dec; 75(6):898-904. PubMed ID: 2693676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of localized skin infection in tick-borne encephalitis virus transmission.
    Labuda M; Austyn JM; Zuffova E; Kozuch O; Fuchsberger N; Lysy J; Nuttall PA
    Virology; 1996 May; 219(2):357-66. PubMed ID: 8638401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential feeding success of two paralysis-inducing ticks, Rhipicephalus warburtoni and Ixodes rubicundus on sympatric small mammal species, Elephantulus myurus and Micaelamys namaquensis.
    Harrison A; Robb GN; Bennett NC; Horak IG
    Vet Parasitol; 2012 Sep; 188(3-4):346-54. PubMed ID: 22521977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.