These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11229448)

  • 61. Studies of the reductive half-reaction of milk xanthine dehydrogenase.
    Hunt J; Massey V
    J Biol Chem; 1994 Jul; 269(29):18904-14. PubMed ID: 8034647
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Xanthine Oxidoreductase-Derived Reactive Species: Physiological and Pathological Effects.
    Battelli MG; Polito L; Bortolotti M; Bolognesi A
    Oxid Med Cell Longev; 2016; 2016():3527579. PubMed ID: 26823950
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Involvement of histidine residues in catalytic activity of xanthine dehydrogenase from hen liver.
    Zakrzewska B; Kamiński ZW
    Int J Biochem; 1992 Mar; 24(3):487-91. PubMed ID: 1551461
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Xanthine oxidase activities: evidence for two catalytically different types.
    Krenitsky TA; Tuttle JV
    Arch Biochem Biophys; 1978 Jan; 185(2):370-5. PubMed ID: 24413
    [No Abstract]   [Full Text] [Related]  

  • 65. Reductive activation of doxorubicin by xanthine dehydrogenase from EMT6 mouse mammary carcinoma tumors.
    Yee SB; Pritsos CA
    Chem Biol Interact; 1997 May; 104(2-3):87-101. PubMed ID: 9212777
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Xanthine:NAD+ oxidoreductase in the liver of grass snake Natrix natrix.
    Kamiński ZW; Jezewska
    Comp Biochem Physiol B; 1984; 78(2):447-51. PubMed ID: 6547889
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system.
    Pritsos CA
    Chem Biol Interact; 2000 Dec; 129(1-2):195-208. PubMed ID: 11154741
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Oxidation of NADH catalysed by human xanthine oxidase: generation of superoxide anion.
    Sanders SA; Harrison R; Eisenthal R
    Biochem Soc Trans; 1996 Feb; 24(1):13S. PubMed ID: 8674616
    [No Abstract]   [Full Text] [Related]  

  • 69. Electron transfer process in milk xanthine dehydrogenase as studied by pulse radiolysis.
    Kobayashi K; Miki M; Okamoto K; Nishino T
    J Biol Chem; 1993 Nov; 268(33):24642-6. PubMed ID: 8227023
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Coupled electron/proton transfer in complex flavoproteins: solvent kinetic isotope effect studies of electron transfer in xanthine oxidase and trimethylamine dehydrogenase.
    Hille R; Anderson RF
    J Biol Chem; 2001 Aug; 276(33):31193-201. PubMed ID: 11395485
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pyranopterin dithiolene distortions relevant to electron transfer in xanthine oxidase/dehydrogenase.
    Dong C; Yang J; Leimkühler S; Kirk ML
    Inorg Chem; 2014 Jul; 53(14):7077-9. PubMed ID: 24979205
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of active site glutamate residues in catalysis of Rhodobacter capsulatus xanthine dehydrogenase.
    Leimkühler S; Stockert AL; Igarashi K; Nishino T; Hille R
    J Biol Chem; 2004 Sep; 279(39):40437-44. PubMed ID: 15265866
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electron transfer in milk xanthine oxidase as studied by pulse radiolysis.
    Hille R; Anderson RF
    J Biol Chem; 1991 Mar; 266(9):5608-15. PubMed ID: 2005100
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Roles of molybdenum, FAD and iron-sulphur domains in molybdenum-containing hydroxylases: molecular genetic, kinetic and spectroscopic studies.
    Hughes RK; Bennett B; Doyle WA; Burke JF; Chovnick A; Bray RC
    Biochem Soc Trans; 1991 Aug; 19(3):260S. PubMed ID: 1783109
    [No Abstract]   [Full Text] [Related]  

  • 75. 2,6-Dichlorophenolindophenol is a competitive inhibitor for xanthine oxidase and is therefore not usable as an electron acceptor in the fluorometric assay.
    Mest SJ; Kosted PJ; van Kuijk FJ
    Free Radic Biol Med; 1992; 12(3):189-92. PubMed ID: 1563644
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The reaction of human xanthine dehydrogenase with NADH.
    Sanders SA; Harrison R; Eisenthal R
    Biochem Soc Trans; 1997 Aug; 25(3):517S. PubMed ID: 9388733
    [No Abstract]   [Full Text] [Related]  

  • 77. Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities.
    Hesberg C; Hänsch R; Mendel RR; Bittner F
    J Biol Chem; 2004 Apr; 279(14):13547-54. PubMed ID: 14726515
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tautomeric energetics of xanthine oxidase substrates: xanthine, 2-oxo-6-methylpurine, and lumazine.
    Kim JH; Odutola JA; Popham J; Jones L; von Laven S
    J Inorg Biochem; 2001 Mar; 84(1-2):145-50. PubMed ID: 11330474
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of tautomerism of 2-azaadenine and 2-azahypoxanthine in substrate recognition by xanthine oxidase.
    Hernández B; Orozco M; Luque FJ
    J Comput Aided Mol Des; 1997 Mar; 11(2):153-62. PubMed ID: 9089433
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulation of xanthine oxidase activity by substrates at active sites via cooperative interactions between catalytic subunits: implication to drug pharmacokinetics.
    Tai LA; Hwang KC
    Curr Med Chem; 2011; 18(1):69-78. PubMed ID: 21110814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.