BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11229526)

  • 1. Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data.
    Baker MA; Lawen A
    Antioxid Redox Signal; 2000; 2(2):197-212. PubMed ID: 11229526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-capacity redox control at the plasma membrane of mammalian cells: trans-membrane, cell surface, and serum NADH-oxidases.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):231-42. PubMed ID: 11229528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes.
    Kim C; Crane FL; Faulk WP; Morré DJ
    J Biol Chem; 2002 May; 277(19):16441-7. PubMed ID: 11875069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of rho 0 human Namalwa cells lacking oxidative phosphorylation can be sustained by redox compounds potassium ferricyanide or coenzyme Q10 putatively acting through the plasma membrane oxidase.
    Martinus RD; Linnane AW; Nagley P
    Biochem Mol Biol Int; 1993 Dec; 31(6):997-1005. PubMed ID: 8193603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Membrane fusion between Ehrlich ascites of mastocarcinoma cells and liposome induced by proton translocation of transplasma membrane NADH-ferricyanide redox enzymes].
    Liu SS; Wu JH; Li QH
    Shi Yan Sheng Wu Xue Bao; 1995 Jun; 28(2):137-45. PubMed ID: 7571948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbate and plasma membrane electron transport--enzymes vs efflux.
    Lane DJ; Lawen A
    Free Radic Biol Med; 2009 Sep; 47(5):485-95. PubMed ID: 19501649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is ascorbic acid an antioxidant for the plasma membrane?
    May JM
    FASEB J; 1999 Jun; 13(9):995-1006. PubMed ID: 10336882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct NAD(P)H-dependent redox enzymes isolated from onion root plasma membranes.
    Serrano A; Villalba JM; González-Reyes JA; Navas P; Córdoba F
    Biochem Mol Biol Int; 1994 Apr; 32(5):841-9. PubMed ID: 8069233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase.
    Van Duijn MM; Van der Zee J; VanSteveninck J; Van den Broek PJ
    J Biol Chem; 1998 May; 273(22):13415-20. PubMed ID: 9593673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topography of the 27- and 31-kDa electron transport proteins in the onion root plasma membrane.
    Córdoba MC; Serrano A; Córdoba F; González-Reyes JA; Navas P; Villalba JM
    Biochem Biophys Res Commun; 1995 Nov; 216(3):1054-9. PubMed ID: 7488179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzyme Q10, plasma membrane oxidase and growth control.
    Crane FL; Sun IL; Crowe RA; Alcain FJ; Löw H
    Mol Aspects Med; 1994; 15 Suppl():s1-11. PubMed ID: 7752819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplasma membrane electron transport comes in two flavors.
    Lane DJ; Lawen A
    Biofactors; 2008; 34(3):191-200. PubMed ID: 19734120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-dependent anion-selective channel 1 (VDAC1)--a mitochondrial protein, rediscovered as a novel enzyme in the plasma membrane.
    Lawen A; Ly JD; Lane DJ; Zarschler K; Messina A; De Pinto V
    Int J Biochem Cell Biol; 2005 Feb; 37(2):277-82. PubMed ID: 15474974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for coenzyme Q function in transplasma membrane electron transport.
    Sun IL; Sun EE; Crane FL; Morré DJ
    Biochem Biophys Res Commun; 1990 Nov; 172(3):979-84. PubMed ID: 2244922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The possible role of redox-associated protons in growth of plant cells.
    Barr R
    J Bioenerg Biomembr; 1991 Jun; 23(3):443-67. PubMed ID: 1650780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplasma membrane redox system in HL-60 cells is modulated during TPA-induced differentiation.
    Burón MI; Rodriguez-Aguilera JC; Alcaín FJ; Navas P
    Biochem Biophys Res Commun; 1993 Apr; 192(2):439-45. PubMed ID: 8484755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase.
    Baker MA; Ly JD; Lawen A
    Biofactors; 2004; 21(1-4):215-21. PubMed ID: 15630200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.