BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 11229528)

  • 41. Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport.
    Villalba JM; Navarro F; Córdoba F; Serrano A; Arroyo A; Crane FL; Navas P
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4887-91. PubMed ID: 7761418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glucose-dependent trans-plasma membrane electron transport and p70
    Kelly SC; Patel NN; Eccardt AM; Fisher JS
    Redox Biol; 2019 Oct; 27():101075. PubMed ID: 30578122
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies of pyridine nucleotide oxidizing enzymes from human neutrophils.
    Mackler B; Person R; Davis KA; Ochs H
    Biochem Int; 1985 Sep; 11(3):319-25. PubMed ID: 3933511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transplasma membrane electron transport comes in two flavors.
    Lane DJ; Lawen A
    Biofactors; 2008; 34(3):191-200. PubMed ID: 19734120
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis.
    De Luca T; Morré DM; Zhao H; Morré DJ
    Biofactors; 2005; 25(1-4):43-60. PubMed ID: 16873929
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The hormone-responsive NADH oxidase of the plant plasma membrane has properties of a NADH:protein disulfide reductase.
    Chueh PJ; Morré DM; Penel C; DeHahn T; Morré DJ
    J Biol Chem; 1997 Apr; 272(17):11221-7. PubMed ID: 9111023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase.
    Baker MA; Ly JD; Lawen A
    Biofactors; 2004; 21(1-4):215-21. PubMed ID: 15630200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Topography of the 27- and 31-kDa electron transport proteins in the onion root plasma membrane.
    Córdoba MC; Serrano A; Córdoba F; González-Reyes JA; Navas P; Villalba JM
    Biochem Biophys Res Commun; 1995 Nov; 216(3):1054-9. PubMed ID: 7488179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction.
    Berridge MV; Herst PM; Tan AS
    Biotechnol Annu Rev; 2005; 11():127-52. PubMed ID: 16216776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface NADH oxidase of HeLa cells lacks intrinsic membrane binding motifs.
    Morré DJ; Sedlak D; Tang X; Chueh PJ; Geng T; Morré DM
    Arch Biochem Biophys; 2001 Aug; 392(2):251-6. PubMed ID: 11488599
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NADH oxidase of liver plasma membrane stimulated by diferric transferrin and neoplastic transformation induced by the carcinogen 2-acetylaminofluorene.
    Morré DJ; Crane FL; Eriksson LC; Löw H; Morré DM
    Biochim Biophys Acta; 1991 Mar; 1057(1):140-6. PubMed ID: 2009275
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A light-responsive and periodic NADH oxidase activity of the cell surface of Tetrahymena and of human buffy coat cells.
    Peter AD; Morré DJ; Morré DM
    Antioxid Redox Signal; 2000; 2(2):289-300. PubMed ID: 11229533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The NADH oxidase-Prx system in Amphibacillus xylanus.
    Niimura Y
    Subcell Biochem; 2007; 44():195-205. PubMed ID: 18084894
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of transplasma membrane electron transport by transferrin-adriamycin conjugates.
    Sun IL; Sun EE; Crane FL; Morré DJ; Faulk WP
    Biochim Biophys Acta; 1992 Mar; 1105(1):84-8. PubMed ID: 1567898
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A vanadate-stimulated NADH oxidase in erythrocyte membrane generates hydrogen peroxide.
    Vijaya S; Crane FL; Ramasarma T
    Mol Cell Biochem; 1984 Jun; 62(2):175-85. PubMed ID: 6087122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ascorbate-dependent electron transfer across the human erythrocyte membrane.
    May JM; Qu ZC
    Biochim Biophys Acta; 1999 Sep; 1421(1):19-31. PubMed ID: 10561468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Triton X-100 inhibition of yeast plasma membrane associated NADH-dependent redox activities.
    Awasthi V; Pandit S; Misra PC
    J Enzyme Inhib Med Chem; 2005 Apr; 20(2):205-9. PubMed ID: 15968826
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of ascorbate in biomembrane energetics.
    Morré DJ; Crane FL; Sun IL; Navas P
    Ann N Y Acad Sci; 1987; 498():153-71. PubMed ID: 3113311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hormone- and growth factor-stimulated NADH oxidase.
    Morré DJ
    J Bioenerg Biomembr; 1994 Aug; 26(4):421-33. PubMed ID: 7844117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method.
    Briggs RT; Drath DB; Karnovsky ML; Karnovsky MJ
    J Cell Biol; 1975 Dec; 67(3):566-86. PubMed ID: 407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.