BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11229708)

  • 1. Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns.
    Osteen CL; Moore AH; Prins ML; Hovda DA
    J Neurotrauma; 2001 Feb; 18(2):141-62. PubMed ID: 11229708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of an N-type calcium channel antagonist (SNX 111; Ziconotide) on calcium-45 accumulation following fluid-percussion injury.
    Samii A; Badie H; Fu K; Luther RR; Hovda DA
    J Neurotrauma; 1999 Oct; 16(10):879-92. PubMed ID: 10547097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injury-induced alterations in N-methyl-D-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion.
    Osteen CL; Giza CC; Hovda DA
    Neuroscience; 2004; 128(2):305-22. PubMed ID: 15350643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severity of experimental brain injury on lactate and free fatty acid accumulation and Evans blue extravasation in the rat cortex and hippocampus.
    Dhillon HS; Carman HM; Zhang D; Scheff SW; Prasad MR
    J Neurotrauma; 1999 Jun; 16(6):455-69. PubMed ID: 10391363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death.
    Gurkoff GG; Giza CC; Hovda DA
    Brain Res; 2006 Mar; 1077(1):24-36. PubMed ID: 16490184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased hippocampal CA3 vulnerability to low-level kainic acid following lateral fluid percussion injury.
    Zanier ER; Lee SM; Vespa PM; Giza CC; Hovda DA
    J Neurotrauma; 2003 May; 20(5):409-20. PubMed ID: 12803974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury.
    Yi JH; Pow DV; Hazell AS
    Glia; 2005 Jan; 49(1):121-33. PubMed ID: 15390098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury.
    Dhillon HS; Donaldson D; Dempsey RJ; Prasad MR
    J Neurotrauma; 1994 Aug; 11(4):405-15. PubMed ID: 7837281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neuronal cytoskeleton is at risk after mild and moderate brain injury.
    Saatman KE; Graham DI; McIntosh TK
    J Neurotrauma; 1998 Dec; 15(12):1047-58. PubMed ID: 9872461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of brain-derived neurotrophic factor, nerve growth factor, and heat shock protein HSP70 following fluid percussion brain injury in rats.
    Truettner J; Schmidt-Kastner R; Busto R; Alonso OF; Loor JY; Dietrich WD; Ginsberg MD
    J Neurotrauma; 1999 Jun; 16(6):471-86. PubMed ID: 10391364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified calcium accumulation after controlled cortical impact under cyclosporin A treatment: a 45Ca autoradiographic study.
    Mirzayan MJ; Klinge PM; Ude S; Hotop A; Samii M; Brinker T; Korkmaz Z; Meyer GJ; Knapp WH; Samii A
    Neurol Res; 2008 Jun; 30(5):476-9. PubMed ID: 18953738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury.
    Prins ML; Hovda DA
    J Neurotrauma; 2001 Jan; 18(1):31-46. PubMed ID: 11200248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postinjury magnesium treatment attenuates traumatic brain injury-induced cortical induction of p53 mRNA in rats.
    Muir JK; Raghupathi R; Emery DL; Bareyre FM; McIntosh TK
    Exp Neurol; 1999 Oct; 159(2):584-93. PubMed ID: 10506531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traumatic brain injury elevates glycogen and induces tolerance to ischemia in rat brain.
    Otori T; Friedland JC; Sinson G; McIntosh TK; Raghupathi R; Welsh FA
    J Neurotrauma; 2004 Jun; 21(6):707-18. PubMed ID: 15253799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of the blood-brain barrier after fluid percussion brain injury in the rat: Part 2: Effect of hypoxia on permeability to plasma proteins.
    Tanno H; Nockels RP; Pitts LH; Noble LJ
    J Neurotrauma; 1992; 9(4):335-47. PubMed ID: 1291693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in BDNF and synapsin I within the occipital cortex and hippocampus after mild traumatic brain injury in the developing rat: reflections of injury-induced neuroplasticity.
    Griesbach GS; Hovda DA; Molteni R; Gomez-Pinilla F
    J Neurotrauma; 2002 Jul; 19(7):803-14. PubMed ID: 12184851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats.
    Huh JW; Franklin MA; Widing AG; Raghupathi R
    Dev Neurosci; 2006; 28(4-5):466-76. PubMed ID: 16943669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diminution of metabolism/blood flow uncoupling following traumatic brain injury in rats in response to high-dose human albumin treatment.
    Ginsberg MD; Zhao W; Belayev L; Alonso OF; Liu Y; Loor JY; Busto R
    J Neurosurg; 2001 Mar; 94(3):499-509. PubMed ID: 11235957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinamide treatment provides acute neuroprotection and GFAP regulation following fluid percussion injury.
    Holland MA; Tan AA; Smith DC; Hoane MR
    J Neurotrauma; 2008 Feb; 25(2):140-52. PubMed ID: 18260797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential changes in glial fibrillary acidic protein and gene expression following parasagittal fluid-percussion brain injury in rats.
    Dietrich WD; Truettner J; Zhao W; Alonso OF; Busto R; Ginsberg MD
    J Neurotrauma; 1999 Jul; 16(7):567-81. PubMed ID: 10447069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.