BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11229900)

  • 1. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation.
    Ranneklev SB; Bååth E
    Appl Environ Microbiol; 2001 Mar; 67(3):1116-22. PubMed ID: 11229900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of 3H-thymidine by different prokaryotic groups in relation to temperature and nutrients in a lacustrine ecosystem.
    Boucher D; Richardot M; Thénot A; Debroas D
    Microb Ecol; 2006 Oct; 52(3):399-407. PubMed ID: 16770684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rate of change of a soil bacterial community after liming as a function of temperature.
    Pettersson M; Bååth E
    Microb Ecol; 2003 Aug; 46(2):177-86. PubMed ID: 14708743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams.
    Adams HE; Crump BC; Kling GW
    Environ Microbiol; 2010 May; 12(5):1319-33. PubMed ID: 20192972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of phospholipid fatty acids to detect previous self-heating events in stored peat.
    Ranneklev SB; Bååth E
    Appl Environ Microbiol; 2003 Jun; 69(6):3532-9. PubMed ID: 12788760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates.
    Pietikäinen J; Pettersson M; Bååth E
    FEMS Microbiol Ecol; 2005 Mar; 52(1):49-58. PubMed ID: 16329892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tolerance (PICT) of the bacterial communities to copper in vineyards soils from Spain.
    Díaz-Raviña M; Calvo de Anta R; Bååth E
    J Environ Qual; 2007; 36(6):1760-4. PubMed ID: 17965378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between coastal bacterioplankton growth rates and biomass production: comparison of leucine and thymidine uptake with single-cell physiological characteristics.
    Franco-Vidal L; Morán XA
    Microb Ecol; 2011 Feb; 61(2):328-41. PubMed ID: 21120654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent changes in the soil bacterial community in limed and unlimed soil.
    Pettersson M; Bååth E
    FEMS Microbiol Ecol; 2003 Jul; 45(1):13-21. PubMed ID: 19719602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth Rates of Bacterial Communities in Soils at Varying pH: A Comparison of the Thymidine and Leucine Incorporation Techniques.
    Bååth E
    Microb Ecol; 1998 Nov; 36(3):316-327. PubMed ID: 9852511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hyperthermia on thymidine salvage as related to DNA synthesis.
    Skog S; He Q; Tribukait B
    Int J Hyperthermia; 1992; 8(1):99-109. PubMed ID: 1545167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth response of the bacterial community to pH in soils differing in pH.
    Fernández-Calviño D; Bååth E
    FEMS Microbiol Ecol; 2010 Jul; 73(1):149-56. PubMed ID: 20455934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of temperature on the composition and activity of denitrifying soil communities.
    Braker G; Schwarz J; Conrad R
    FEMS Microbiol Ecol; 2010 Jul; 73(1):134-48. PubMed ID: 20455938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil.
    Noll M; Klose M; Conrad R
    FEMS Microbiol Ecol; 2010 Aug; 73(2):215-25. PubMed ID: 20491920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial incorporation of leucine into protein down to -20 degrees C with evidence for potential activity in sub-eutectic saline ice formations.
    Junge K; Eicken H; Swanson BD; Deming JW
    Cryobiology; 2006 Jun; 52(3):417-29. PubMed ID: 16647051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid method of determining factors limiting bacterial growth in soil.
    Aldén L; Demoling F; Bååth E
    Appl Environ Microbiol; 2001 Apr; 67(4):1830-8. PubMed ID: 11282640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of drying and rewetting on bacterial growth rates in soil.
    Iovieno P; Bååth E
    FEMS Microbiol Ecol; 2008 Sep; 65(3):400-7. PubMed ID: 18547324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the long-term legacy of drought and warming on the soil microbial community across five European shrubland ecosystems.
    Rousk J; Smith AR; Jones DL
    Glob Chang Biol; 2013 Dec; 19(12):3872-84. PubMed ID: 23897832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature adaptation of bacterial communities in experimentally warmed forest soils.
    Rousk J; Frey SD; Bååth E
    Glob Chang Biol; 2012 Oct; 18(10):3252-3258. PubMed ID: 28741822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of aerobic and anaerobic [3H]leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils.
    Aaen KN; Holm PE; Priemé A; Hung NN; Brandt KK
    Environ Toxicol Chem; 2011 Mar; 30(3):588-95. PubMed ID: 21298704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.