These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 11230161)
1. Gene duplication and the structure of eukaryotic genomes. Friedman R; Hughes AL Genome Res; 2001 Mar; 11(3):373-81. PubMed ID: 11230161 [TBL] [Abstract][Full Text] [Related]
2. Pattern and timing of gene duplication in animal genomes. Friedman R; Hughes AL Genome Res; 2001 Nov; 11(11):1842-7. PubMed ID: 11691848 [TBL] [Abstract][Full Text] [Related]
3. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Lespinet O; Wolf YI; Koonin EV; Aravind L Genome Res; 2002 Jul; 12(7):1048-59. PubMed ID: 12097341 [TBL] [Abstract][Full Text] [Related]
4. Patterns of gene duplication in Saccharomyces cerevisiae and Caenorhabditis elegans. Cavalcanti AR; Ferreira R; Gu Z; Li WH J Mol Evol; 2003 Jan; 56(1):28-37. PubMed ID: 12569420 [TBL] [Abstract][Full Text] [Related]
5. Genomic gene clustering analysis of pathways in eukaryotes. Lee JM; Sonnhammer EL Genome Res; 2003 May; 13(5):875-82. PubMed ID: 12695325 [TBL] [Abstract][Full Text] [Related]
6. Variation in gene duplicates with low synonymous divergence in Saccharomyces cerevisiae relative to Caenorhabditis elegans. Katju V; Farslow JC; Bergthorsson U Genome Biol; 2009; 10(7):R75. PubMed ID: 19594930 [TBL] [Abstract][Full Text] [Related]
7. Detection of gene duplications and block duplications in eukaryotic genomes. Li WH; Gu Z; Cavalcanti AR; Nekrutenko A J Struct Funct Genomics; 2003; 3(1-4):27-34. PubMed ID: 12836682 [TBL] [Abstract][Full Text] [Related]
8. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Kellis M; Birren BW; Lander ES Nature; 2004 Apr; 428(6983):617-24. PubMed ID: 15004568 [TBL] [Abstract][Full Text] [Related]
9. Gene duplication and the properties of biological networks. Hughes AL; Friedman R J Mol Evol; 2005 Dec; 61(6):758-64. PubMed ID: 16315107 [TBL] [Abstract][Full Text] [Related]
10. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Gu Z; Cavalcanti A; Chen FC; Bouman P; Li WH Mol Biol Evol; 2002 Mar; 19(3):256-62. PubMed ID: 11861885 [TBL] [Abstract][Full Text] [Related]
11. The temporal distribution of gene duplication events in a set of highly conserved human gene families. Friedman R; Hughes AL Mol Biol Evol; 2003 Jan; 20(1):154-61. PubMed ID: 12519918 [TBL] [Abstract][Full Text] [Related]
12. Computational approaches to unveiling ancient genome duplications. Van de Peer Y Nat Rev Genet; 2004 Oct; 5(10):752-63. PubMed ID: 15510166 [TBL] [Abstract][Full Text] [Related]
13. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Langkjaer RB; Cliften PF; Johnston M; Piskur J Nature; 2003 Feb; 421(6925):848-52. PubMed ID: 12594514 [TBL] [Abstract][Full Text] [Related]
14. Parallel evolution by gene duplication in the genomes of two unicellular fungi. Hughes AL; Friedman R Genome Res; 2003 May; 13(5):794-9. PubMed ID: 12727899 [TBL] [Abstract][Full Text] [Related]
15. Parallel evolution by gene duplication in the genomes of two unicellular fungi. Hughes AL; Friedman R Genome Res; 2003 Jun; 13(6A):1259-64. PubMed ID: 12901373 [TBL] [Abstract][Full Text] [Related]
16. Mystery of intron gain. Fedorov A; Roy S; Fedorova L; Gilbert W Genome Res; 2003 Oct; 13(10):2236-41. PubMed ID: 12975308 [TBL] [Abstract][Full Text] [Related]
17. Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Boudet N; Aubourg S; Toffano-Nioche C; Kreis M; Lecharny A Genome Res; 2001 Dec; 11(12):2101-14. PubMed ID: 11731501 [TBL] [Abstract][Full Text] [Related]
18. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Panopoulou G; Hennig S; Groth D; Krause A; Poustka AJ; Herwig R; Vingron M; Lehrach H Genome Res; 2003 Jun; 13(6A):1056-66. PubMed ID: 12799346 [TBL] [Abstract][Full Text] [Related]
19. Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. Koszul R; Caburet S; Dujon B; Fischer G EMBO J; 2004 Jan; 23(1):234-43. PubMed ID: 14685272 [TBL] [Abstract][Full Text] [Related]
20. Transposable element distribution in the yeast genome reflects a role in repeated genomic rearrangement events on an evolutionary time scale. Hughes AL; Friedman R Genetica; 2004 Jun; 121(2):181-5. PubMed ID: 15330117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]