These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11230341)

  • 1. Differential inhibition of functional dilation of small arterioles by indomethacin and glibenclamide.
    Hammer LW; Ligon AL; Hester RL
    Hypertension; 2001 Feb; 37(2 Pt 2):599-603. PubMed ID: 11230341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of venular prostaglandin release on arteriolar diameter during functional hyperemia.
    McKay MK; Gardner AL; Boyd D; Hester RL
    Hypertension; 1998 Jan; 31(1 Pt 2):213-7. PubMed ID: 9453305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional hyperemia in striated muscle is reduced following blockade of ATP-sensitive potassium channels.
    Saito Y; McKay M; Eraslan A; Hester RL
    Am J Physiol; 1996 May; 270(5 Pt 2):H1649-54. PubMed ID: 8928870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-mediated release of arachidonic acid metabolites from venular endothelium causes arteriolar dilation.
    Hammer LW; Ligon AL; Hester RL
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2616-22. PubMed ID: 11356617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EDRF from rat intestine and skeletal muscle venules causes dilation of arterioles.
    Falcone JC; Bohlen HG
    Am J Physiol; 1990 May; 258(5 Pt 2):H1515-23. PubMed ID: 2337183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of endothelium-derived relaxing factors in arteriolar dilation during muscle contraction elicited by electrical field stimulation.
    Saito Y; Eraslan A; Hester RL
    Microcirculation; 1994 Oct; 1(3):195-201. PubMed ID: 8790590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo.
    de Wit C; Schäfer C; von Bismarck P; Bolz SS; Pohl U
    Pflugers Arch; 1997 Aug; 434(4):354-61. PubMed ID: 9211800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
    Ishizaka H; Kuo L
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H104-12. PubMed ID: 9249480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sulfonylureas on K(ATP) channel-dependent vasodilation.
    Cyrino FZ; Bottino DA; Coelho FC; Ravel D; Bouskela E
    J Diabetes Complications; 2003; 17(2 Suppl):6-10. PubMed ID: 12623162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of indomethacin on capillary growth and microvasculature in chronically stimulated rat skeletal muscles.
    Pearce SC; Hudlická O; Brown MD
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):435-43. PubMed ID: 10896732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in EDNO contribution to arteriolar diameters at rest and during functional dilation in striated muscle.
    Hester RL; Eraslan A; Saito Y
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H146-51. PubMed ID: 8342626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arteriolar tone is determined by activity of ATP-sensitive potassium channels.
    Jackson WF
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1797-803. PubMed ID: 8238593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dilatory effect of furosemide on rat tracheal arterioles and venules.
    Corboz MR; Ballard ST; Inglis SK; Taylor AE
    Am J Respir Crit Care Med; 1997 Aug; 156(2 Pt 1):478-83. PubMed ID: 9279227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coronary arteriolar dilation to acidosis: role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins.
    Ishizaka H; Gudi SR; Frangos JA; Kuo L
    Circulation; 1999 Feb; 99(4):558-63. PubMed ID: 9927404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple dilator pathways in skeletal muscle contraction-induced arteriolar dilations.
    Murrant CL; Sarelius IH
    Am J Physiol Regul Integr Comp Physiol; 2002 Apr; 282(4):R969-78. PubMed ID: 11893599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K
    Schemke S; de Wit C
    Pflugers Arch; 2021 Nov; 473(11):1795-1806. PubMed ID: 34386847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels.
    Hein TW; Xu W; Kuo L
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ATP-sensitive potassium channels in regulating coronary microcirculation.
    Komaru T; Kanatsuka H; Dellsperger K; Takishima T
    Biorheology; 1993; 30(5-6):371-80. PubMed ID: 8186403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional vasodilation in the rat spinotrapezius muscle: role of nitric oxide, prostanoids and epoxyeicosatrienoic acids.
    Xiang L; Naik JS; Hester RL
    Clin Exp Pharmacol Physiol; 2008 May; 35(5-6):617-24. PubMed ID: 18215183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of venular endothelium in control of arteriolar diameter during functional hyperemia.
    Saito Y; Eraslan A; Lockard V; Hester RL
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H1227-31. PubMed ID: 8092290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.