BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 11230347)

  • 1. Superoxide inhibits neuronal nitric oxide synthase influences on afferent arterioles in spontaneously hypertensive rats.
    Ichihara A; Hayashi M; Hirota N; Saruta T
    Hypertension; 2001 Feb; 37(2 Pt 2):630-4. PubMed ID: 11230347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Navar LG
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal nitric oxide synthase modulates rat renal microvascular function.
    Ichihara A; Inscho EW; Imig JD; Navar LG
    Am J Physiol; 1998 Mar; 274(3):F516-24. PubMed ID: 9530268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactive nitric oxide-angiotensin II influences on renal microcirculation in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Inscho EW; Navar LG
    Hypertension; 1998 Jun; 31(6):1255-60. PubMed ID: 9622138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal NOS contributes to biphasic autoregulatory response during enhanced TGF activity.
    Ichihara A; Navar LG
    Am J Physiol; 1999 Jul; 277(1):F113-20. PubMed ID: 10409304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclooxygenase-2 participates in tubular flow-dependent afferent arteriolar tone: interaction with neuronal NOS.
    Ichihara A; Imig JD; Inscho EW; Navar LG
    Am J Physiol; 1998 Oct; 275(4):F605-12. PubMed ID: 9755132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
    Schoonmaker GC; Fallet RW; Carmines PK
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F302-9. PubMed ID: 10662734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles.
    Liu ZZ; Mathia S; Pahlitzsch T; Wennysia IC; Persson PB; Lai EY; Högner A; Xu MZ; Schubert R; Rosenberger C; Patzak A
    Am J Physiol Renal Physiol; 2017 May; 312(5):F908-F916. PubMed ID: 28052871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR.
    Welch WJ; Tojo A; Wilcox CS
    Am J Physiol Renal Physiol; 2000 May; 278(5):F769-76. PubMed ID: 10807588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide.
    Schnackenberg CG; Welch WJ; Wilcox CS
    Hypertension; 1998 Jul; 32(1):59-64. PubMed ID: 9674638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide modulates but does not impair myogenic vasoconstriction of the afferent arteriole in spontaneously hypertensive rats. Studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Suzuki H; Saruta T
    Hypertension; 1995 Jun; 25(6):1212-9. PubMed ID: 7768564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of a role of neuronal nitric oxide synthase in the regulation of the renal function in rats fed a low-sodium diet.
    Vanecková I; Kramer HJ; Malý J; Bäcker A; Bokemeyer D; Cervenka L
    Kidney Blood Press Res; 2002; 25(4):224-31. PubMed ID: 12424424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide synthase inhibition activates L- and T-type Ca2+ channels in afferent and efferent arterioles.
    Feng MG; Navar LG
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F873-9. PubMed ID: 16263803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole.
    Layton AT; Edwards A
    Am J Physiol Renal Physiol; 2015 Oct; 309(8):F708-19. PubMed ID: 26180238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducible nitric oxide synthase attenuates endothelium-dependent renal microvascular vasodilation.
    Ichihara A; Hayashi M; Navar LG; Saruta T
    J Am Soc Nephrol; 2000 Oct; 11(10):1807-1812. PubMed ID: 11004210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predisposition of spontaneously hypertensive rats to develop renal injury during nitric oxide synthase inhibition.
    Verhagen AM; Koomans HA; Joles JA
    Eur J Pharmacol; 2001 Jan; 411(1-2):175-180. PubMed ID: 11137873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative regional haemodynamic effects of the nitric oxide synthase inhibitors, S-methyl-L-thiocitrulline and L-NAME, in conscious rats.
    Wakefield ID; March JE; Kemp PA; Valentin JP; Bennett T; Gardiner SM
    Br J Pharmacol; 2003 Jul; 139(6):1235-43. PubMed ID: 12871844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blunted tubuloglomerular feedback by absence of angiotensin type 1A receptor involves neuronal NOS.
    Ichihara A; Hayashi M; Koura Y; Tada Y; Sugaya T; Hirota N; Saruta T
    Hypertension; 2002 Dec; 40(6):934-9. PubMed ID: 12468582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of contribution of nitric oxide synthase to cholinergic vasodilation in murine renal afferent arterioles.
    Park S; Bivona BJ; Harrison-Bernard LM
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1197-F1204. PubMed ID: 29412691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of nNOS in regulation of renal function in angiotensin II-induced hypertension.
    Cervenka L; Kramer HJ; Malý J; Heller J
    Hypertension; 2001 Aug; 38(2):280-5. PubMed ID: 11509490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.