BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 11230509)

  • 1. K+ currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels.
    Coleman HA; Tare M; Parkington HC
    J Physiol; 2001 Mar; 531(Pt 2):359-73. PubMed ID: 11230509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease.
    Coleman HA; Tare M; Parkington HC
    Clin Exp Pharmacol Physiol; 2004 Sep; 31(9):641-9. PubMed ID: 15479173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EDHF is not K+ but may be due to spread of current from the endothelium in guinea pig arterioles.
    Coleman HA; Tare M; Parkington HC
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2478-83. PubMed ID: 11356601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K+ channels which contribute to the acetylcholine-induced hyperpolarization in smooth muscle of the guinea-pig submucosal arteriole.
    Hashitani H; Suzuki H
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):319-29. PubMed ID: 9192304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of gap junctions and EETs in endothelium-dependent hyperpolarization of porcine coronary artery.
    Edwards G; Thollon C; Gardener MJ; Félétou M; Vilaine J; Vanhoutte PM; Weston AH
    Br J Pharmacol; 2000 Mar; 129(6):1145-54. PubMed ID: 10725263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-dependent hyperpolarization and intercellular electrical coupling in guinea-pig mesenteric arterioles.
    Yamamoto Y; Imaeda K; Suzuki H
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):505-13. PubMed ID: 9852331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K+ is an endothelium-derived hyperpolarizing factor in rat arteries.
    Edwards G; Dora KA; Gardener MJ; Garland CJ; Weston AH
    Nature; 1998 Nov; 396(6708):269-72. PubMed ID: 9834033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig carotid and porcine coronary arteries.
    Quignard JF; Félétou M; Thollon C; Vilaine JP; Duhault J; Vanhoutte PM
    Br J Pharmacol; 1999 May; 127(1):27-34. PubMed ID: 10369452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery.
    Zygmunt PM; Edwards G; Weston AH; Larsson B; Högestätt ED
    Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of endothelial cell hyperpolarization in EDHF-mediated responses in the guinea-pig carotid artery.
    Quignard JF; Félétou M; Edwards G; Duhault J; Weston AH; Vanhoutte PM
    Br J Pharmacol; 2000 Mar; 129(6):1103-12. PubMed ID: 10725258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of gap junctions in the responses to EDHF in rat and guinea-pig small arteries.
    Edwards G; Félétou M; Gardener MJ; Thollon C; Vanhoutte PM; Weston AH
    Br J Pharmacol; 1999 Dec; 128(8):1788-94. PubMed ID: 10588935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade by 18beta-glycyrrhetinic acid of intercellular electrical coupling in guinea-pig arterioles.
    Yamamoto Y; Fukuta H; Nakahira Y; Suzuki H
    J Physiol; 1998 Sep; 511 ( Pt 2)(Pt 2):501-8. PubMed ID: 9706026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycyrrhetinic derivatives inhibit hyperpolarization in endothelial cells of guinea pig and rat arteries.
    Tare M; Coleman HA; Parkington HC
    Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H335-41. PubMed ID: 11748079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an apamin-sensitive small-conductance Ca(2+)-activated K(+) channel in porcine coronary artery endothelium: relevance to EDHF.
    Burnham MP; Bychkov R; Félétou M; Richards GR; Vanhoutte PM; Weston AH; Edwards G
    Br J Pharmacol; 2002 Mar; 135(5):1133-43. PubMed ID: 11877319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries.
    Murphy ME; Brayden JE
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):723-34. PubMed ID: 8788937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDHF-mediated relaxation in rat gastric small arteries: influence of ouabain/Ba2+ and relation to potassium ions.
    Van de Voorde J; Vanheel B
    J Cardiovasc Pharmacol; 2000 Apr; 35(4):543-8. PubMed ID: 10774783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential actions of anandamide, potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig basilar artery.
    Zygmunt PM; Sørgård M; Petersson J; Johansson R; Högestätt ED
    Naunyn Schmiedebergs Arch Pharmacol; 2000 May; 361(5):535-42. PubMed ID: 10832608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.