BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11230524)

  • 1. Early effects of renal denervation in the anaesthetised rat: natriuresis and increased cortical blood flow.
    Kompanowska-Jezierska E; Walkowska A; Johns EJ; Sadowski J
    J Physiol; 2001 Mar; 531(Pt 2):527-34. PubMed ID: 11230524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exaggerated volume expansion natriuresis in rats preloaded with hypertonic saline: a paradoxical enhancement by inhibition of prostaglandin synthesis.
    Kompanowska-Jezierska E; Walkowska A; Sadowski J
    Acta Physiol Scand; 1999 Nov; 167(3):189-94. PubMed ID: 10606820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effect of frusemide on renal medullary and cortical blood flow in the anaesthetised rat.
    Dobrowolski L; B dzyńska B; Sadowski J
    Exp Physiol; 2000 Nov; 85(6):783-9. PubMed ID: 11187972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vasopressin modulation of medullary blood flow and pressure-natriuresis-diuresis in the decerebrated rat.
    Franchini KG; Mattson DL; Cowley AW
    Am J Physiol; 1997 May; 272(5 Pt 2):R1472-9. PubMed ID: 9176339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effect of angiotensin II on blood circulation in the renal medulla and cortex of anaesthetised rats.
    Badzyńska B; Grzelec-Mojzesowicz M; Dobrowolski L; Sadowski J
    J Physiol; 2002 Jan; 538(Pt 1):159-66. PubMed ID: 11773324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats.
    Walkowska A; Kompanowska-Jezierska E; Sadowski J
    Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure natriuresis and renal medullary blood flow in dogs.
    Majid DS; Godfrey M; Navar LG
    Hypertension; 1997 Apr; 29(4):1051-7. PubMed ID: 9095098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic hypertonicity of the renal medulla during changes in renal perfusion pressure in the rat.
    Dobrowolski L; Badzyńska B; Walkowska A; Sadowski J
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):929-35. PubMed ID: 9518743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure natriuresis and cortical and papillary blood flow in inbred Dahl rats.
    Roman RJ; Kaldunski M
    Am J Physiol; 1991 Sep; 261(3 Pt 2):R595-602. PubMed ID: 1887948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits.
    Evans RG; Madden AC; Denton KM
    Acta Physiol Scand; 2000 Aug; 169(4):297-308. PubMed ID: 10951121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal tissue NO and intrarenal haemodynamics during experimental variations of NO content in anaesthetised rats.
    Grzelec-Mojzesowicz M; Sadowski J
    J Physiol Pharmacol; 2007 Mar; 58(1):149-63. PubMed ID: 17440233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney.
    Majid DS; Godfrey M; Omoro SA
    Hypertension; 1997 Jan; 29(1 Pt 2):210-5. PubMed ID: 9039104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional role of ETB receptors in the renal medulla.
    Vassileva I; Mountain C; Pollock DM
    Hypertension; 2003 Jun; 41(6):1359-63. PubMed ID: 12719443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome P-450 monooxygenases in control of renal haemodynamics and arterial pressure in anaesthetized rats.
    Kuczeriszka M; Badzyńska B; Kompanowska-Jezierska E
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 11():179-85. PubMed ID: 17244949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cortical and medullary blood flow at different levels of renal nerve activity.
    Hermansson K; Ojteg G; Wolgast M
    Acta Physiol Scand; 1984 Feb; 120(2):161-9. PubMed ID: 6711334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of renal medullary adenosine in the control of blood flow and sodium excretion.
    Zou AP; Nithipatikom K; Li PL; Cowley AW
    Am J Physiol; 1999 Mar; 276(3):R790-8. PubMed ID: 10070140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the neural control of intrarenal blood flow.
    Navakatikyan MA; Leonard BL; Evans RG; Malpas SC
    Clin Exp Pharmacol Physiol; 2000 Aug; 27(8):650-2. PubMed ID: 10901400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Centrogenic arterial hypertension and local renal blood flow: evidence of nervous regulation of medullary circulation].
    Ganich IuIa; Suchkov VV; Kreer AKh; Keler M
    Fiziol Zh SSSR Im I M Sechenova; 1984 Jan; 70(1):48-55. PubMed ID: 6698251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal nerves and the natriuresis following unilateral renal exclusion in the rat.
    Humphreys MH; Lin SY; Wiedemann E
    Kidney Int; 1991 Jan; 39(1):63-70. PubMed ID: 2002634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposed effects of prostaglandin E2 on perfusion of rat renal cortex and medulla: interactions with the renin-angiotensin system.
    Badzynska B; Sadowski J
    Exp Physiol; 2008 Dec; 93(12):1292-302. PubMed ID: 18586855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.