These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11230913)

  • 1. Separation of critical radioactive and non-radioactive species from aqueous waste streams.
    Bader MS
    J Hazard Mater; 2001 Mar; 82(2):139-82. PubMed ID: 11230913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of chloride and sulfate ions in univalent and divalent cation forms from aqueous streams.
    Bader MS
    J Hazard Mater; 2000 Apr; 73(3):269-83. PubMed ID: 10751697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative ease of separation of mixtures of selected nuisance anions (nitrate, nitrite, sulfate, phosphate) using Octolig.
    Stull FW; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1545-50. PubMed ID: 20183512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.
    Lumetta GJ; Braley JC; Peterson JM; Bryan SA; Levitskaia TG
    Environ Sci Technol; 2012 Jun; 46(11):6190-7. PubMed ID: 22571620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste.
    Bader MS
    J Hazard Mater; 2005 May; 121(1-3):89-108. PubMed ID: 15885410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of ions precipitation in mixed-solvent mixtures.
    Bader MS
    J Hazard Mater; 1999 Nov; 69(3):319-34. PubMed ID: 10536294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater.
    Park JY; Byun HJ; Choi WH; Kang WH
    Chemosphere; 2008 Feb; 70(8):1429-37. PubMed ID: 17950778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective separation of hydroxide from alkaline nuclear tank waste by liquid-liquid extraction with weak hydroxy acids.
    Chambliss CK; Haverlock TI; Bonnesen PV; Engle NL; Moyer BA
    Environ Sci Technol; 2002 Apr; 36(8):1861-7. PubMed ID: 11993889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect.
    Zhang J; Brutus TE; Cheng J; Meng X
    J Environ Sci (China); 2017 Jul; 57():190-195. PubMed ID: 28647239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective separation of phosphate and fluoride from semiconductor wastewater.
    Warmadewanthi B; Liu JC
    Water Sci Technol; 2009; 59(10):2047-53. PubMed ID: 19474500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion-ion interactions enhance aluminum solubility in alkaline suspensions of nano-gibbsite (α-Al(OH)
    Dembowski M; Snyder MM; Delegard CH; Reynolds JG; Graham TR; Wang HW; Leavy II; Baum SR; Qafoku O; Fountain MS; Rosso KM; Clark SB; Pearce CI
    Phys Chem Chem Phys; 2020 Feb; 22(8):4368-4378. PubMed ID: 31850442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plaster board waste (PBW) - A potential fluoride leaching source in soil/water environments and, fluoride immobilization studies using soils.
    Sivasankar V; Omine K; Zhang Z; Shi S; Sano H; Chicas SD
    Environ Res; 2023 Feb; 218():115005. PubMed ID: 36493809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of sulfate from wet FGD wastewater by co-precipitation with calcium hydroxide and sodium aluminate.
    Yu J; Lu J; Kang Y
    Water Sci Technol; 2018 Mar; 77(5-6):1336-1345. PubMed ID: 29528321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precipitation of nitrate-cancrinite in Hanford Tank Sludge.
    Buck EC; McNamara BK
    Environ Sci Technol; 2004 Aug; 38(16):4432-8. PubMed ID: 15382874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.
    Beddow H; Black S; Read D
    J Environ Radioact; 2006; 86(3):289-312. PubMed ID: 16303218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking cesium and strontium uptake to kaolinite weathering in simulated tank waste leachate.
    Chorover J; Choi S; Amistadi MK; Karthikeyan KG; Crosson G; Mueller KT
    Environ Sci Technol; 2003 May; 37(10):2200-8. PubMed ID: 12785526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.
    Spalding BP; Spalding IR
    Environ Sci Technol; 2001 Jan; 35(2):365-73. PubMed ID: 11347611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of nitrate to control sulfide generation by sulfate-reducing bacteria associated with oily waste.
    Londry K; Suflita J
    J Ind Microbiol Biotechnol; 1999 Jun; 22(6):582-589. PubMed ID: 10455484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An isotope dilution-precipitation process for removing radioactive cesium from wastewater.
    Rogers H; Bowers J; Gates-Anderson D
    J Hazard Mater; 2012 Dec; 243():124-9. PubMed ID: 23116720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.