These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 11233120)

  • 81. A QTL that enhances and broadens Bt insect resistance in soybean.
    Walker DR; Narvel JM; Boerma HR; All JN; Parrott WA
    Theor Appl Genet; 2004 Sep; 109(5):1051-7. PubMed ID: 15243707
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Resistance to Bt toxins.
    Tabashnik BE; Roush RT; Earle ED; Shelton AM
    Science; 2000 Jan; 287(5450):42. PubMed ID: 10644220
    [No Abstract]   [Full Text] [Related]  

  • 83. Bacillus thuringiensis protein production, signal transduction, and insect control in chemically inducible PR-1a/cry1Ab broccoli plants.
    Cao J; Bates SL; Zhao JZ; Shelton AM; Earle ED
    Plant Cell Rep; 2006 Jun; 25(6):554-60. PubMed ID: 16418860
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Cross-resistance and inheritance of resistance to Bacillus thuringiensis toxin Cry1Ac in diamondback moth (Plutella xylostella L) from lowland Malaysia.
    Sayyed AH; Wright DJ
    Pest Manag Sci; 2001 May; 57(5):413-21. PubMed ID: 11374157
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effect of entomopathogenic nematodes on the fitness cost of resistance to Bt toxin crylac in pink bollworm (Lepidoptera: Gelechiidae).
    Gassmann AJ; Stock SP; Carrière Y; Tabashnik BE
    J Econ Entomol; 2006 Jun; 99(3):920-6. PubMed ID: 16813331
    [TBL] [Abstract][Full Text] [Related]  

  • 86. DiPel-selected Ostrinia nubilalis larvae are not resistant to transgenic corn expressing Bacillus thuringiensis Cry1Ab.
    Li H; Buschman LL; Huang F; Zhu KY; Bonning B; Oppert B
    J Econ Entomol; 2007 Dec; 100(6):1862-70. PubMed ID: 18232404
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm.
    Chen WB; Lu GQ; Cheng HM; Liu CX; Xiao YT; Xu C; Shen ZC; Soberón M; Bravo A; Wu KM
    Transgenic Res; 2017 Dec; 26(6):763-774. PubMed ID: 29143178
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Delaying corn rootworm resistance to Bt corn.
    Tabashnik BE; Gould F
    J Econ Entomol; 2012 Jun; 105(3):767-76. PubMed ID: 22812111
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent.
    Himanen SJ; Nerg AM; Nissinen A; Stewart CN; Poppy GM; Holopainen JK
    Environ Pollut; 2009 Jan; 157(1):181-5. PubMed ID: 18757127
    [TBL] [Abstract][Full Text] [Related]  

  • 90. An agent-based model of insect resistance management and mitigation for Bt maize: a social science perspective.
    Saikai Y; Hurley TM; Mitchell PD
    Pest Manag Sci; 2021 Jan; 77(1):273-284. PubMed ID: 32696499
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Tri-trophic studies using Cry1Ac-resistant Plutella xylostella demonstrate no adverse effects of Cry1Ac on the entomopathogenic nematode, Heterorhabditis bacteriophora.
    Gautam S; Olmstead D; Tian JC; Collins HL; Shelton AM
    J Econ Entomol; 2014 Feb; 107(1):115-20. PubMed ID: 24665692
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.
    Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Allele frequency of resistance to Bacillus thuringiensis Cry1ab corn in Louisiana populations of sugarcane borer (Lepidoptera: Crambidae).
    Huang F; Leonard BR; Moore SH; Cook DR; Baldwin J; Tindall KV; Lee DR
    J Econ Entomol; 2008 Apr; 101(2):492-8. PubMed ID: 18459416
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Interplant movement of Heliothis virescens (Lepidoptera: Noctuidae) larvae in pure and mixed plantings of cotton with and without expression of the Cry1Ac delta-endotoxin protein of Bacillus thuringiensis Berliner.
    Parker CD; Luttrell RG
    J Econ Entomol; 1999 Aug; 92(4):837-45. PubMed ID: 10504897
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Diamondback moth compensatory consumption of protease inhibitor-transformed plants.
    Winterer J; Bergelson J
    Mol Ecol; 2001 Apr; 10(4):1069-74. PubMed ID: 11348512
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The progress in insect cross-resistance among Bacillus thuringiensis toxins.
    Wei J; Zhang Y; An S
    Arch Insect Biochem Physiol; 2019 Nov; 102(3):e21547. PubMed ID: 30864250
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Baseline Plant-to-Plant Larval Movement of Spodoptera eridania in Bt and Non-Bt Soybean and Its Possible Impacts on IRM.
    Fanela TLM; Baldin ELL; Hunt TE; Faria RD
    J Econ Entomol; 2020 Aug; 113(4):1741-1752. PubMed ID: 32346742
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Lengthening of insect development on Bt zone results in adult emergence asynchrony: does it influence the effectiveness of the high dose/refuge zone strategy?
    Gryspeirt A; Grégoire JC
    Toxins (Basel); 2012 Nov; 4(11):1323-42. PubMed ID: 23202319
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Insect resistance to Bt crops: lessons from the first billion acres.
    Tabashnik BE; Brévault T; Carrière Y
    Nat Biotechnol; 2013 Jun; 31(6):510-21. PubMed ID: 23752438
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Stable Bacillus thuringiensis transgene introgression from Brassica napus to wild mustard B. juncea.
    Cao D; Stewart CN; Zheng M; Guan Z; Tang ZX; Wei W; Ma KP
    Plant Sci; 2014 Oct; 227():45-50. PubMed ID: 25219305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.