These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 11233120)
101. Landscape configurations of refuge areas that delay the evolution of resistance to Bt sugarcane: an agent based modeling approach. Human DJ; Potgieter L J Econ Entomol; 2023 Aug; 116(4):1360-1371. PubMed ID: 37392449 [TBL] [Abstract][Full Text] [Related]
102. Genetics of resistance to transgenic Bacillus thuringiensis poplars in Chrysomela tremulae (Coleoptera: Chrysomelidae). Augustin S; Courtin C; Rejasse A; Lorme P; Genissel A; Bourguet D J Econ Entomol; 2004 Jun; 97(3):1058-64. PubMed ID: 15279291 [TBL] [Abstract][Full Text] [Related]
103. Elite Indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas). Khanna HK; Raina SK Transgenic Res; 2002 Aug; 11(4):411-23. PubMed ID: 12212843 [TBL] [Abstract][Full Text] [Related]
104. Source-sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. Caprio MA J Econ Entomol; 2001 Jun; 94(3):698-705. PubMed ID: 11425026 [TBL] [Abstract][Full Text] [Related]
105. Combining pest control and resistance management: synergy of engineered insects with Bt crops. Alphey N; Bonsall MB; Alphey L J Econ Entomol; 2009 Apr; 102(2):717-32. PubMed ID: 19449654 [TBL] [Abstract][Full Text] [Related]
106. Bt transgenic crops do not have favorable effects on resistant insects. Tabashnik BE; Carrière Y J Insect Sci; 2004; 4():4. PubMed ID: 15861220 [TBL] [Abstract][Full Text] [Related]
107. Combining refuges with transgenic insect releases for the management of an insect pest with non-recessive resistance to Bt crops in agricultural landscapes. Brewer TR; Bonsall MB J Theor Biol; 2021 Jan; 509():110514. PubMed ID: 33053395 [TBL] [Abstract][Full Text] [Related]
108. Modelling the spatial configuration of refuges for a sustainable control of pests: a case study of Bt cotton. Vacher C; Bourguet D; Rousset F; Chevillon C; Hochberg ME J Evol Biol; 2003 May; 16(3):378-87. PubMed ID: 14635838 [TBL] [Abstract][Full Text] [Related]
109. Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis. Heckel DG; Gahan LJ; Liu YB; Tabashnik BE Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8373-7. PubMed ID: 10411882 [TBL] [Abstract][Full Text] [Related]
110. Effects of a Bt-based insecticide on the functional response of Ceraeochrysa cincta preying on Plutella xylostella. de Oliveira Pimenta IC; da Silva Nunes G; de Magalhães GO; Dos Santos NA; Pinto MMD; De Bortoli SA Ecotoxicology; 2020 Sep; 29(7):856-865. PubMed ID: 32613481 [TBL] [Abstract][Full Text] [Related]
111. The Combination of Jiang YX; Chen JZ; Li MW; Zha BH; Huang PR; Chu XM; Chen J; Yang G Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008871 [TBL] [Abstract][Full Text] [Related]
112. Transgenic Bt-producing Brassica napus: Plutella xylostella selection pressure and fitness of weedy relatives. Mason P; Braun L; Warwick SI; Zhu B; Stewart CN Environ Biosafety Res; 2003; 2(4):263-76. PubMed ID: 15612282 [TBL] [Abstract][Full Text] [Related]
113. Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes. Moon HS; Halfhill MD; Good LL; Raymer PL; Neal Stewart C Plant Cell Rep; 2007 Jul; 26(7):1001-10. PubMed ID: 17333014 [TBL] [Abstract][Full Text] [Related]
114. Oviposition patterns of primary lepidopteran defoliators in soybean and the impact on structured refuge recommendations. Gonçalves J; Calixto ES; de Freitas Bueno A; Dourado PM; Paula-Moraes SV Pest Manag Sci; 2024 Nov; 80(11):5619-5629. PubMed ID: 38940546 [TBL] [Abstract][Full Text] [Related]
115. The influence of different nutrient levels on insect-induced plant volatiles in Bt and conventional oilseed rape plants. Ibrahim MA; Stewart-Jones A; Pulkkinen J; Poppy GM; Holopainen JK Plant Biol (Stuttg); 2008 Jan; 10(1):97-107. PubMed ID: 18211550 [TBL] [Abstract][Full Text] [Related]
116. Managing insecticide resistance by mass release of engineered insects. Alphey N; Coleman PG; Donnelly CA; Alphey L J Econ Entomol; 2007 Oct; 100(5):1642-9. PubMed ID: 17972643 [TBL] [Abstract][Full Text] [Related]
117. Bacillus thuringiensis-based bioinsecticides affect predation of Euborellia annulipes on diamondback moth larvae. da Silva Nunes G; de Souza JM; Ramalho DG; De Bortoli SA; Polanczyk RA Environ Sci Pollut Res Int; 2023 Aug; 30(39):90730-90740. PubMed ID: 37462876 [TBL] [Abstract][Full Text] [Related]
118. Evaluating the impacts of refuge width on source-sink dynamics between transgenic and non-transgenic cotton. Caprio MA; Faver MK; Hankins G J Insect Sci; 2004; 4():3. PubMed ID: 15861219 [TBL] [Abstract][Full Text] [Related]
119. Expression of cry1Aa gene in cabbage imparts resistance against diamondback moth (Plutella xylostella). Gambhir G; Kumar P; Aggarwal G; Srivastava DK; Thakur AK Biol Futur; 2020 Jun; 71(1-2):165-173. PubMed ID: 34554534 [TBL] [Abstract][Full Text] [Related]
120. Large-scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance. Carrière Y; Ellers-Kirk C; Hartfield K; Larocque G; Degain B; Dutilleul P; Dennehy TJ; Marsh SE; Crowder DW; Li X; Ellsworth PC; Naranjo SE; Palumbo JC; Fournier A; Antilla L; Tabashnik BE Proc Natl Acad Sci U S A; 2012 Jan; 109(3):775-80. PubMed ID: 22215605 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]