These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 1123316)
21. Regulation of isofunctional enzymes in Pseudomonas alcaligenes mutants defective in the gentisate pathway. Poh CL; Bayly RC J Appl Bacteriol; 1988 May; 64(5):451-8. PubMed ID: 3170385 [TBL] [Abstract][Full Text] [Related]
22. P-cresol and 3,5-xylenol methylhydroxylases in Pseudomonas putida N.C.I.B. 9896. Keat MJ; Hopper DJ Biochem J; 1978 Nov; 175(2):649-58. PubMed ID: 743215 [TBL] [Abstract][Full Text] [Related]
23. Bacterial metabolism of para- and meta-xylene: oxidation of a methyl substituent. Davey JF; Gibson DT J Bacteriol; 1974 Sep; 119(3):923-9. PubMed ID: 4850727 [TBL] [Abstract][Full Text] [Related]
24. The aromatic alcohol dehydrogenases in Pseudomonas putida N.C.I.B. 9869 grown on 3,5-xylenol and p-cresol. Keat MJ; Hopper DJ Biochem J; 1978 Nov; 175(2):659-67. PubMed ID: 743216 [TBL] [Abstract][Full Text] [Related]
25. The metabolism of protocatechuate by Pseudomonas testosteroni. Dagley S; Geary PJ; Wood JM Biochem J; 1968 Oct; 109(4):559-68. PubMed ID: 5683506 [TBL] [Abstract][Full Text] [Related]
26. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid. Hopper DJ; Kemp PD J Bacteriol; 1980 Apr; 142(1):21-6. PubMed ID: 6989805 [TBL] [Abstract][Full Text] [Related]
27. Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission. Dennis DA; Chapman PJ; Dagley S J Bacteriol; 1973 Jan; 113(1):521-3. PubMed ID: 4143957 [TBL] [Abstract][Full Text] [Related]
28. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. Worsey MJ; Williams PA J Bacteriol; 1975 Oct; 124(1):7-13. PubMed ID: 1176436 [TBL] [Abstract][Full Text] [Related]
29. Phenol and cresol metabolism in Bacillus pumilus isolated from contaminated groundwater. Günther K; Schlosser D; Fritsche W J Basic Microbiol; 1995; 35(2):83-92. PubMed ID: 7783002 [TBL] [Abstract][Full Text] [Related]
30. Pathways of 4-hydroxybenzoate degradation among species of Bacillus. Crawford RL J Bacteriol; 1976 Jul; 127(1):204-10. PubMed ID: 931947 [TBL] [Abstract][Full Text] [Related]
31. Benzoate metabolism in Pseudomonas putida(arvilla) mt-2: demonstration of two benzoate pathways. Nakazawa T; Yokota T J Bacteriol; 1973 Jul; 115(1):262-7. PubMed ID: 4717515 [TBL] [Abstract][Full Text] [Related]
32. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. Altenschmidt U; Oswald B; Steiner E; Herrmann H; Fuchs G J Bacteriol; 1993 Aug; 175(15):4851-8. PubMed ID: 8335640 [TBL] [Abstract][Full Text] [Related]
33. Bacterial metabolism of arylsulfonates: role of meta cleavage in benzene sulfonate oxidation by Pseudomonas testosteroni. Ripin MJ; Cook TM; Noon KF; Stark LE Appl Microbiol; 1975 Mar; 29(3):382-7. PubMed ID: 163618 [TBL] [Abstract][Full Text] [Related]
34. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Chen YF; Chao H; Zhou NY Appl Microbiol Biotechnol; 2014 Feb; 98(3):1349-56. PubMed ID: 23736872 [TBL] [Abstract][Full Text] [Related]
35. Catabolism of aromatic compounds by micro-organisms. Dagley S Adv Microb Physiol; 1971; 6(0):1-46. PubMed ID: 4950664 [No Abstract] [Full Text] [Related]
36. Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B 13. Knackmuss HJ; Hellwig M Arch Microbiol; 1978 Apr; 117(1):1-7. PubMed ID: 678009 [TBL] [Abstract][Full Text] [Related]
37. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains. Mrozik A; Labuzek S Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825 [TBL] [Abstract][Full Text] [Related]
38. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Sala-Trepat JM; Murray K; Williams PA Eur J Biochem; 1972 Jul; 28(3):347-56. PubMed ID: 4342908 [No Abstract] [Full Text] [Related]
39. Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. Tao Y; Fishman A; Bentley WE; Wood TK J Bacteriol; 2004 Jul; 186(14):4705-13. PubMed ID: 15231803 [TBL] [Abstract][Full Text] [Related]
40. Control of catechol meta-cleavage pathway in Alcaligenes eutrophus. Hughes EJ; Bayly RC J Bacteriol; 1983 Jun; 154(3):1363-70. PubMed ID: 6853447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]