These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 11233760)
1. Sensitivity of immature neurons in culture to metal-induced changes in reactive oxygen species and intracellular free calcium. Mundy WR; Freudenrich TM Neurotoxicology; 2000 Dec; 21(6):1135-44. PubMed ID: 11233760 [TBL] [Abstract][Full Text] [Related]
2. Acute exposure to methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor-linked pathway. Limke TL; Bearss JJ; Atchison WD Toxicol Sci; 2004 Jul; 80(1):60-8. PubMed ID: 15141107 [TBL] [Abstract][Full Text] [Related]
3. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Shanker G; Aschner JL; Syversen T; Aschner M Brain Res Mol Brain Res; 2004 Sep; 128(1):48-57. PubMed ID: 15337317 [TBL] [Abstract][Full Text] [Related]
4. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress. Kaur P; Aschner M; Syversen T Toxicology; 2007 Feb; 230(2-3):164-77. PubMed ID: 17169475 [TBL] [Abstract][Full Text] [Related]
5. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells. Limke TL; Atchison WD Toxicol Appl Pharmacol; 2002 Jan; 178(1):52-61. PubMed ID: 11781080 [TBL] [Abstract][Full Text] [Related]
6. Methylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices. Yuan Y; Atchison WD Mol Pharmacol; 2007 Apr; 71(4):1109-21. PubMed ID: 17244699 [TBL] [Abstract][Full Text] [Related]
7. The use of fluorescence for detecting MeHg-induced ROS in cell cultures. Kaur P; Schulz K; Heggland I; Aschner M; Syversen T Toxicol In Vitro; 2008 Aug; 22(5):1392-8. PubMed ID: 18343630 [TBL] [Abstract][Full Text] [Related]
8. Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury. Bellum S; Bawa B; Thuett KA; Stoica G; Abbott LC Int J Toxicol; 2007; 26(3):261-9. PubMed ID: 17564908 [TBL] [Abstract][Full Text] [Related]
16. NMDA-receptor regulation of muscarinic-receptor stimulated inositol 1,4,5-trisphosphate production and protein kinase C activation in single cerebellar granule neurons. Young KW; Garro MA; Challiss RA; Nahorski SR J Neurochem; 2004 Jun; 89(6):1537-46. PubMed ID: 15189357 [TBL] [Abstract][Full Text] [Related]
17. Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes. Kahlert S; Zündorf G; Reiser G J Neurosci Res; 2005 Jan 1-15; 79(1-2):262-71. PubMed ID: 15578732 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Ciani E; Grøneng L; Voltattorni M; Rolseth V; Contestabile A; Paulsen RE Brain Res; 1996 Jul; 728(1):1-6. PubMed ID: 8864290 [TBL] [Abstract][Full Text] [Related]
19. Different effects of isoflurane and sevoflurane on cytotoxicity. Wang QJ; Li KZ; Yao SL; Li ZH; Liu SS Chin Med J (Engl); 2008 Feb; 121(4):341-6. PubMed ID: 18304468 [TBL] [Abstract][Full Text] [Related]
20. Calcium-dependent production of reactive oxygen species is involved in neuronal damage induced during glycolysis inhibition in cultured hippocampal neurons. Hernández-Fonseca K; Cárdenas-Rodríguez N; Pedraza-Chaverri J; Massieu L J Neurosci Res; 2008 Jun; 86(8):1768-80. PubMed ID: 18293416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]