BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11233985)

  • 1. Complete 5' and 3' end maturation of group II intron-containing tRNA precursors.
    Vogel J; Hess WR
    RNA; 2001 Feb; 7(2):285-92. PubMed ID: 11233985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants.
    Vogel J; Börner T; Hess WR
    Nucleic Acids Res; 1999 Oct; 27(19):3866-74. PubMed ID: 10481026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of in vivo processing intermediates and of splice junctions of tRNAs from maize chloroplasts by amplification with the polymerase chain reaction.
    Delp G; Igloi GL; Kössel H
    Nucleic Acids Res; 1991 Feb; 19(4):713-6. PubMed ID: 2017358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem.
    Zaug AJ; McEvoy MM; Cech TR
    Biochemistry; 1993 Aug; 32(31):7946-53. PubMed ID: 8347600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the 3'-end of tRNA with ribonuclease P RNA.
    Oh BK; Pace NR
    Nucleic Acids Res; 1994 Oct; 22(20):4087-94. PubMed ID: 7524035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant nuclear tRNA(Met) genes are ubiquitously interrupted by introns.
    Akama K; Kashihara M
    Plant Mol Biol; 1996 Nov; 32(3):427-34. PubMed ID: 8980491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function relationships of two closely related group IC3 intron ribozymes from Azoarcus and Synechococcus pre-tRNA.
    Ikawa Y; Naito D; Shiraishi H; Inoue T
    Nucleic Acids Res; 2000 Sep; 28(17):3269-77. PubMed ID: 10954594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural and functional study of plastid RNAs homologous to catalytic bacterial RNase P RNA.
    de la Cruz J; Vioque A
    Gene; 2003 Dec; 321():47-56. PubMed ID: 14636991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for MatK as an essential splice factor.
    Vogel J; Hübschmann T; Börner T; Hess WR
    J Mol Biol; 1997 Jul; 270(2):179-87. PubMed ID: 9236120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splicing of arabidopsis tRNA(Met) precursors in tobacco cell and wheat germ extracts.
    Akama K; Junker V; Yukawa Y; Sugiura M; Beier H
    Plant Mol Biol; 2000 Sep; 44(2):155-65. PubMed ID: 11117259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New intron-containing human tRNA(Leu) genes.
    Karwowska U; Szweykowska-Kulińska Z
    Acta Biochim Pol; 1997; 44(4):791-4. PubMed ID: 9584861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the anticodon stem of tRNA cause accumulation and Met22-dependent decay of pre-tRNA in yeast.
    Payea MJ; Hauke AC; De Zoysa T; Phizicky EM
    RNA; 2020 Jan; 26(1):29-43. PubMed ID: 31619505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise branch point mapping and quantification of splicing intermediates.
    Vogel J; Hess WR; Börner T
    Nucleic Acids Res; 1997 May; 25(10):2030-1. PubMed ID: 9115373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.
    Dávila-Aponte JA; Huss VA; Sogin ML; Cech TR
    Nucleic Acids Res; 1991 Aug; 19(16):4429-36. PubMed ID: 1886767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of transfer RNA precursors in a wheat mitochondrial extract.
    Hanic-Joyce PJ; Gray MW
    J Biol Chem; 1990 Aug; 265(23):13782-91. PubMed ID: 1696257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro processing of mitochondrial and plastid derived tRNA precursors in a plant mitochondrial extract.
    Marchfelder A; Schuster W; Brennicke A
    Nucleic Acids Res; 1990 Mar; 18(6):1401-6. PubMed ID: 2326185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA editing in hornwort chloroplasts makes more than half the genes functional.
    Kugita M; Yamamoto Y; Fujikawa T; Matsumoto T; Yoshinaga K
    Nucleic Acids Res; 2003 May; 31(9):2417-23. PubMed ID: 12711687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales.
    Sugahara J; Kikuta K; Fujishima K; Yachie N; Tomita M; Kanai A
    Mol Biol Evol; 2008 Dec; 25(12):2709-16. PubMed ID: 18832079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tobacco nuclear extract supporting transcription, processing, splicing and modification of plant intron-containing tRNA precursors.
    Yukawa Y; Fan H; Akama K; Beier H; Gross HJ; Sugiura M
    Plant J; 2001 Dec; 28(5):583-94. PubMed ID: 11849597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.