These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 11234930)
21. Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Galushko A; Minz D; Schink B; Widdel F Environ Microbiol; 1999 Oct; 1(5):415-20. PubMed ID: 11207761 [TBL] [Abstract][Full Text] [Related]
22. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. Jiang L; Zheng Y; Peng X; Zhou H; Zhang C; Xiao X; Wang F FEMS Microbiol Ecol; 2009 Nov; 70(2):93-106. PubMed ID: 19744241 [TBL] [Abstract][Full Text] [Related]
23. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline. Robertson WJ; Franzmann PD; Mee BJ J Appl Microbiol; 2000 Feb; 88(2):248-59. PubMed ID: 10735993 [TBL] [Abstract][Full Text] [Related]
24. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related]
25. Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Teske A; Ramsing NB; Habicht K; Fukui M; Küver J; Jørgensen BB; Cohen Y Appl Environ Microbiol; 1998 Aug; 64(8):2943-51. PubMed ID: 9687455 [TBL] [Abstract][Full Text] [Related]
26. Distribution and diversity of sulfur-oxidizing Thiomicrospira spp. at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Brinkhoff T; Sievert SM; Kuever J; Muyzer G Appl Environ Microbiol; 1999 Sep; 65(9):3843-9. PubMed ID: 10473384 [TBL] [Abstract][Full Text] [Related]
27. Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments. Hayes LA; Lovley DR Microb Ecol; 2002 Jan; 43(1):134-45. PubMed ID: 11984635 [TBL] [Abstract][Full Text] [Related]
28. Distribution of candidate division JS1 and other Bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. Webster G; Yarram L; Freese E; Köster J; Sass H; Parkes RJ; Weightman AJ FEMS Microbiol Ecol; 2007 Oct; 62(1):78-89. PubMed ID: 17692095 [TBL] [Abstract][Full Text] [Related]
29. Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. Stubner S J Microbiol Methods; 2004 May; 57(2):219-30. PubMed ID: 15063062 [TBL] [Abstract][Full Text] [Related]
30. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925 [TBL] [Abstract][Full Text] [Related]
31. Abundance and diversity of sulfate-reducing bacteria in the sediment of the Zhou Cun drinking water reservoir in Eastern China. Yang X; Huang TL; Guo L; Xia C; Zhang HH; Zhou SL Genet Mol Res; 2015 May; 14(2):5830-44. PubMed ID: 26125782 [TBL] [Abstract][Full Text] [Related]
32. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). Kjeldsen KU; Loy A; Jakobsen TF; Thomsen TR; Wagner M; Ingvorsen K FEMS Microbiol Ecol; 2007 May; 60(2):287-98. PubMed ID: 17367515 [TBL] [Abstract][Full Text] [Related]
33. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Thamdrup B; Rosselló-Mora R; Amann R Appl Environ Microbiol; 2000 Jul; 66(7):2888-97. PubMed ID: 10877783 [TBL] [Abstract][Full Text] [Related]
34. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Gillan DC; Danis B; Pernet P; Joly G; Dubois P Appl Environ Microbiol; 2005 Feb; 71(2):679-90. PubMed ID: 15691917 [TBL] [Abstract][Full Text] [Related]
35. Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Joulian C; Ramsing NB; Ingvorsen K Appl Environ Microbiol; 2001 Jul; 67(7):3314-8. PubMed ID: 11425760 [TBL] [Abstract][Full Text] [Related]
36. Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE. Bagwell CE; Formolo M; Ye Q; Yeager CM; Lyons TW; Zhang CL J Basic Microbiol; 2009 Sep; 49 Suppl 1():S87-92. PubMed ID: 19322839 [TBL] [Abstract][Full Text] [Related]
37. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings. Schabereiter-Gurtner C; Saiz-Jimenez C; Piñar G; Lubitz W; Rölleke S Environ Microbiol; 2002 Jul; 4(7):392-400. PubMed ID: 12123475 [TBL] [Abstract][Full Text] [Related]
38. Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Wilms R; Sass H; Köpke B; Köster J; Cypionka H; Engelen B Appl Environ Microbiol; 2006 Apr; 72(4):2756-64. PubMed ID: 16597980 [TBL] [Abstract][Full Text] [Related]
39. Diversity of microbial communities correlated to physiochemical parameters in a digestion basin of a zero-discharge mariculture system. Cytryn E; Gelfand I; Barak Y; van Rijn J; Minz D Environ Microbiol; 2003 Jan; 5(1):55-63. PubMed ID: 12542713 [TBL] [Abstract][Full Text] [Related]
40. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]