BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11235815)

  • 1. Albumin release from biodegradable hydrogels composed of dextran and poly(ethylene glycol) macromer.
    Kim IS; Jeong YI; Kim DH; Lee YH; Kim SH
    Arch Pharm Res; 2001 Feb; 24(1):69-73. PubMed ID: 11235815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer.
    Kim IS; Jeong YI; Kim SH
    Int J Pharm; 2000 Sep; 205(1-2):109-16. PubMed ID: 11000547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug release from the enzyme-degradable and pH-sensitive hydrogel composed of glycidyl methacrylate dextran and poly(acrylic acid).
    Kim IS; Oh IJ
    Arch Pharm Res; 2005 Aug; 28(8):983-7. PubMed ID: 16178427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol), poly(ε-caprolactone) and/or methacrylic acid for controlled drug release.
    Hou P; Zhang N; Wu R; Xu W; Hou Z
    J Biomater Appl; 2017 Oct; 32(4):511-523. PubMed ID: 28899224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of new hydrogels by visible light cross-linking of dextran methacrylate and poly(ethylene glycol)-maleic acid copolymer.
    Kolahdoozan M; Rahimi T; Taghizadeh A; Aghaei H
    Int J Biol Macromol; 2023 Feb; 227():1221-1233. PubMed ID: 36464196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast in situ forming poly(ethylene glycol)-poly(amido amine) hydrogels with tunable drug release properties via controllable degradation rates.
    Buwalda SJ; Bethry A; Hunger S; Kandoussi S; Coudane J; Nottelet B
    Eur J Pharm Biopharm; 2019 Jun; 139():232-239. PubMed ID: 30954658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization.
    Pacelli S; Paolicelli P; Casadei MA
    Carbohydr Polym; 2015 Aug; 126():208-14. PubMed ID: 25933541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol) and dextran with an interpenetrating polymer network.
    Kurisawa M; Terano M; Yui N
    J Biomater Sci Polym Ed; 1997; 8(9):691-708. PubMed ID: 9257182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications.
    Lévesque SG; Lim RM; Shoichet MS
    Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM
    Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New semi-interpenetrating network hydrogels: synthesis, characterization and properties.
    Zhao SP; Ma D; Zhang LM
    Macromol Biosci; 2006 Jun; 6(6):445-51. PubMed ID: 16761276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled release of a model protein from enzymatically degrading dextran microspheres.
    Franssen O; Stenekes RJ; Hennink WE
    J Control Release; 1999 May; 59(2):219-28. PubMed ID: 10332056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell viability of chitosan-containing semi-interpenetrated hydrogels based on PCL-PEG-PCL diacrylate macromer.
    Zhu AP; Chan-Park MB
    J Biomater Sci Polym Ed; 2005; 16(3):301-16. PubMed ID: 15850286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel.
    Russell RJ; Pishko MV; Gefrides CC; McShane MJ; Coté GL
    Anal Chem; 1999 Aug; 71(15):3126-32. PubMed ID: 10450158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile method to fabricate thermo- and pH-sensitive hydrogels with good mechanical performance based on poly(ethylene glycol) methyl ether methacrylate and acrylic acid as a potential drug carriers.
    Yue Z; Che Y; Jin Z; Wang S; Ma Q; Zhang Q; Tan Y; Meng F
    J Biomater Sci Polym Ed; 2019 Oct; 30(15):1375-1398. PubMed ID: 31220422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation of cationic dextran microspheres loaded with tetanus toxoid and study on the mechanism of protein loading].
    Zheng CL; Liu XQ; Zhu JB; Zhao YN
    Yao Xue Xue Bao; 2010 Sep; 45(9):1183-7. PubMed ID: 21351577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable hydrogels for time-controlled release of tethered peptides or proteins.
    Brandl F; Hammer N; Blunk T; Tessmar J; Goepferich A
    Biomacromolecules; 2010 Feb; 11(2):496-504. PubMed ID: 20095560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.