These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11235877)

  • 1. Effect of adding phosphate to drinking water on bacterial growth in slightly and highly corroded pipes.
    Appenzeller BM; Batté M; Mathieu L; Block JC; Lahoussine V; Cavard J; Gatel D
    Water Res; 2001 Mar; 35(4):1100-5. PubMed ID: 11235877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.
    Jang HJ; Choi YJ; Ro HM; Ka JO
    J Microbiol; 2012 Feb; 50(1):17-28. PubMed ID: 22367933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coliform culturability in over- versus undersaturated drinking waters.
    Grandjean D; Fass S; Tozza D; Cavard J; Lahoussine V; Saby S; Guilloteau H; Block JC
    Water Res; 2005 May; 39(9):1878-86. PubMed ID: 15899286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorine decay in drinking-water transmission and distribution systems: pipe service age effect.
    Al-Jasser AO
    Water Res; 2007 Jan; 41(2):387-96. PubMed ID: 17140619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes.
    Yang F; Shi B; Bai Y; Sun H; Lytle DA; Wang D
    Water Res; 2014 Aug; 59():46-57. PubMed ID: 24784453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen.
    Sarin P; Snoeyink VL; Bebee J; Jim KK; Beckett MA; Kriven WM; Clement JA
    Water Res; 2004 Mar; 38(5):1259-69. PubMed ID: 14975659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physico-chemical characteristics of corrosion scales in old iron pipes.
    Sarin P; Snoeyink VL; Bebee J; Kriven WM; Clement JA
    Water Res; 2001 Aug; 35(12):2961-9. PubMed ID: 11471696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of microbial growth to orthophosphate and organic carbon influx in copper and plastic based plumbing water systems.
    Park SK; Kim YK; Choi SC
    Chemosphere; 2008 Jul; 72(7):1027-34. PubMed ID: 18495203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron release and characteristics of corrosion scales and bacterial communities in drinking water supply pipes of different materials with varied nitrate concentrations.
    Zhang H; Liu Y; Wang L; Liu S
    Chemosphere; 2022 Aug; 301():134652. PubMed ID: 35447205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of different pipe corrosion by ESEM and bacteria identification by API in pilot distribution network].
    Wu Q; Zhao X; Yu Q; Li J
    Wei Sheng Yan Jiu; 2008 Jul; 37(4):405-8. PubMed ID: 18839520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new scenario of lead contamination in potable water distribution systems: Galvanic corrosion between lead and stainless steel.
    Ng DQ; Chen CY; Lin YP
    Sci Total Environ; 2018 Oct; 637-638():1423-1431. PubMed ID: 29801235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of phosphate on bacterial adhesion onto iron oxyhydroxide in drinking water.
    Appenzeller BM; Duval YB; Thomas F; Block JC
    Environ Sci Technol; 2002 Feb; 36(4):646-52. PubMed ID: 11883420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Growth characteristics and control of iron bacteria on cast iron in drinking water distribution systems].
    Wang Y; Zhang XJ; Chen YQ; Lu PP; Chen C
    Huan Jing Ke Xue; 2009 Nov; 30(11):3293-9. PubMed ID: 20063743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replicable simulation of distal hot water premise plumbing using convectively-mixed pipe reactors.
    Spencer MS; Cullom AC; Rhoads WJ; Pruden A; Edwards MA
    PLoS One; 2020; 15(9):e0238385. PubMed ID: 32936810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
    Zhang Z; Stout JE; Yu VL; Vidic R
    Water Res; 2008 Jan; 42(1-2):129-36. PubMed ID: 17884130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system.
    Douterelo I; Husband S; Boxall JB
    Water Res; 2014 May; 54():100-14. PubMed ID: 24565801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust.
    van der Lugt W; Euser SM; Bruin JP; Den Boer JW; Walker JT; Crespi S
    Int J Hyg Environ Health; 2017 Nov; 220(8):1295-1308. PubMed ID: 28869187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of nutrient release from iron metal for microbial regrowth in water distribution systems.
    Morton SC; Zhang Y; Edwards MA
    Water Res; 2005 Aug; 39(13):2883-92. PubMed ID: 16029882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.
    Yang F; Shi B; Gu J; Wang D; Yang M
    Water Res; 2012 Oct; 46(16):5423-33. PubMed ID: 22882957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems.
    Chu C; Lu C; Lee C
    J Environ Manage; 2005 Feb; 74(3):255-63. PubMed ID: 15644265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.