BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11236711)

  • 21. The role of Mixer in patterning the early Xenopus embryo.
    Kofron M; Wylie C; Heasman J
    Development; 2004 May; 131(10):2431-41. PubMed ID: 15128672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis.
    Tiedemann H; Asashima M; Grunz H; Knöchel W
    Dev Growth Differ; 2001 Oct; 43(5):469-502. PubMed ID: 11576166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dorsal induction from dorsal vegetal cells in Xenopus occurs after mid-blastula transition.
    Nagano T; Ito Y; Tashiro K; Kobayakawa Y; Sakai M
    Mech Dev; 2000 May; 93(1-2):3-14. PubMed ID: 10781935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of activin and other peptide growth factors in body patterning in the early amphibian embryo.
    Asashima M; Kinoshita K; Ariizumi T; Malacinski GM
    Int Rev Cytol; 1999; 191():1-52. PubMed ID: 10343391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in
    Ding Y; Ploper D; Sosa EA; Colozza G; Moriyama Y; Benitez MD; Zhang K; Merkurjev D; De Robertis EM
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3081-E3090. PubMed ID: 28348214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.
    Kenny AP; Oleksyn DW; Newman LA; Angerer RC; Angerer LM
    Dev Biol; 2003 Sep; 261(2):412-25. PubMed ID: 14499650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm.
    Kumano G; Ezal C; Smith WC
    Dev Biol; 2001 Aug; 236(2):465-77. PubMed ID: 11476585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling.
    Faucourt M; Houliston E; Besnardeau L; Kimelman D; Lepage T
    Dev Biol; 2001 Jan; 229(2):287-306. PubMed ID: 11203696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xenopus hairy2b specifies anterior prechordal mesoderm identity within Spemann's organizer.
    Yamaguti M; Cho KW; Hashimoto C
    Dev Dyn; 2005 Sep; 234(1):102-13. PubMed ID: 16059909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rethinking axial patterning in amphibians.
    Lane MC; Sheets MD
    Dev Dyn; 2002 Dec; 225(4):434-47. PubMed ID: 12454921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulatory signals and tissue interactions in the early hematopoietic cell differentiation in Xenopus laevis embryo.
    Maéno M
    Zoolog Sci; 2003 Aug; 20(8):939-46. PubMed ID: 12951398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dorsal-ventral patterning and neural induction in Xenopus embryos.
    De Robertis EM; Kuroda H
    Annu Rev Cell Dev Biol; 2004; 20():285-308. PubMed ID: 15473842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pattern formation in zebrafish--fruitful liaisons between embryology and genetics.
    Solnica-Krezel L
    Curr Top Dev Biol; 1999; 41():1-35. PubMed ID: 9784971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo.
    Katz Imberman S; Kolpakova A; Keren A; Bengal E
    FEBS J; 2015 Aug; 282(15):2930-47. PubMed ID: 26038288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrafish organizer development and germ-layer formation require nodal-related signals.
    Feldman B; Gates MA; Egan ES; Dougan ST; Rennebeck G; Sirotkin HI; Schier AF; Talbot WS
    Nature; 1998 Sep; 395(6698):181-5. PubMed ID: 9744277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Animal-vegetal axis patterning mechanisms in the early sea urchin embryo.
    Angerer LM; Angerer RC
    Dev Biol; 2000 Feb; 218(1):1-12. PubMed ID: 10644406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular patterning along the sea urchin animal-vegetal axis.
    Brandhorst BP; Klein WH
    Int Rev Cytol; 2002; 213():183-232. PubMed ID: 11837893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spemann's organizer and self-regulation in amphibian embryos.
    De Robertis EM
    Nat Rev Mol Cell Biol; 2006 Apr; 7(4):296-302. PubMed ID: 16482093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.