These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11236879)

  • 1. Observation of skin thermal inertia distribution during reactive hyperaemia using a single-hood measurement system.
    Hassan M; Togawa T
    Physiol Meas; 2001 Feb; 22(1):187-200. PubMed ID: 11236879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the thermal inertia of the skin using successive thermograms taken at a stepwise change in ambient radiation temperature.
    Huang J; Togawa T
    Physiol Meas; 1995 Nov; 16(4):213-25. PubMed ID: 8599689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of imaging of skin thermal properties by successive thermographic measurements at a stepwise change in ambient radiation temperature.
    Huang J; Togawa T
    Physiol Meas; 1995 Nov; 16(4):295-301. PubMed ID: 8599696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser doppler-recorded reactive hyperaemia in the forearm skin during the menstrual cycle.
    Bungum L; Kvernebo K; Oian P; Maltau JM
    Br J Obstet Gynaecol; 1996 Jan; 103(1):70-5. PubMed ID: 8608101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of cutaneous thermal hyperaemia assessed by laser Doppler flowmetry in young and older adults.
    Tew GA; Klonizakis M; Moss J; Ruddock AD; Saxton JM; Hodges GJ
    Microvasc Res; 2011 Mar; 81(2):177-82. PubMed ID: 21167843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility and methodological issues of skin post-occlusive and thermal hyperemia assessed by single-point laser Doppler flowmetry.
    Roustit M; Blaise S; Millet C; Cracowski JL
    Microvasc Res; 2010 Mar; 79(2):102-8. PubMed ID: 20064535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time.
    Tee GB; Rasool AH; Halim AS; Rahman AR
    J Pharmacol Toxicol Methods; 2004; 50(1):73-8. PubMed ID: 15233971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of microcirculation of the skin using Tissue Viability Imaging: A promising technique for detecting venous stasis in the skin.
    Bergkvist M; Henricson J; Iredahl F; Tesselaar E; Sjöberg F; Farnebo S
    Microvasc Res; 2015 Sep; 101():20-5. PubMed ID: 26092681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between post-occlusive forearm skin reactive hyperaemia and vascular disease in patients with Type 2 diabetes--a novel index for detecting micro- and macrovascular dysfunction using laser Doppler flowmetry.
    Yamamoto-Suganuma R; Aso Y
    Diabet Med; 2009 Jan; 26(1):83-8. PubMed ID: 19125766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility of different laser Doppler fluximetry parameters of postocclusive reactive hyperemia in human forearm skin.
    Yvonne-Tee GB; Rasool AH; Halim AS; Rahman AR
    J Pharmacol Toxicol Methods; 2005; 52(2):286-92. PubMed ID: 16125628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity.
    Roustit M; Millet C; Blaise S; Dufournet B; Cracowski JL
    Microvasc Res; 2010 Dec; 80(3):505-11. PubMed ID: 20542492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative reproducibility of dermal microvascular blood flow changes in response to acetylcholine iontophoresis, hyperthermia and reactive hyperaemia.
    Agarwal SC; Allen J; Murray A; Purcell IF
    Physiol Meas; 2010 Jan; 31(1):1-11. PubMed ID: 19940349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function.
    Tew GA; Klonizakis M; Crank H; Briers JD; Hodges GJ
    Microvasc Res; 2011 Nov; 82(3):326-32. PubMed ID: 21803051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of temperature alterations to characterize vascular reactivity.
    Ley O; Dhindsa M; Sommerlad SM; Barnes JN; Devan AE; Naghavi M; Tanaka H
    Clin Physiol Funct Imaging; 2011 Jan; 31(1):66-72. PubMed ID: 20880350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of blood flow on skin heating induced by millimeter wave irradiation in humans.
    Walters TJ; Ryan KL; Nelson DA; Blick DW; Mason PA
    Health Phys; 2004 Feb; 86(2):115-20. PubMed ID: 14744044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperaemic changes in forearm skin perfusion and RBC concentration after increasing occlusion times.
    Farnebo S; Thorfinn J; Henricson J; Tesselaar E
    Microvasc Res; 2010 Dec; 80(3):412-6. PubMed ID: 20659484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermographic studies on patterns of skin temperature after exercise.
    Hunold S; Mietzsch E; Werner J
    Eur J Appl Physiol Occup Physiol; 1992; 65(6):550-4. PubMed ID: 1483445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desensitization of thermal hyperemia in the skin is reproducible.
    Frantz J; Engelberger RP; Liaudet L; Mazzolai L; Waeber B; Feihl F
    Microcirculation; 2012 Jan; 19(1):78-85. PubMed ID: 21819479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolonged (9 h) poikilocapnic hypoxia (12% O2) augments cutaneous thermal hyperaemia in healthy humans.
    Lawley JS; Oliver SJ; Mullins PG; Macdonald JH; Moore JP
    Exp Physiol; 2014 Jun; 99(6):909-20. PubMed ID: 24706191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital thermal hyperaemia impairment does not relate to skin fibrosis or macrovascular disease in systemic sclerosis.
    Salvat-Melis M; Carpentier PH; Minson CT; Boignard A; McCord GR; Paris A; Moreau-Gaudry A; Cracowski JL
    Rheumatology (Oxford); 2006 Dec; 45(12):1490-6. PubMed ID: 16705051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.