These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11236895)

  • 1. Adaptive mesh refinement techniques for electrical impedance tomography.
    Molinari M; Cox SJ; Blott BH; Daniell GJ
    Physiol Meas; 2001 Feb; 22(1):91-6. PubMed ID: 11236895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction.
    Molinari M; Cox SJ; Blott BH; Daniell GJ
    Physiol Meas; 2002 Feb; 23(1):95-104. PubMed ID: 11876245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal imaging with adaptive mesh refinement in electrical impedance tomography.
    Molinari M; Blott BH; Cox SJ; Daniell GJ
    Physiol Meas; 2002 Feb; 23(1):121-8. PubMed ID: 11876225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool.
    Bayford RH; Gibson A; Tizzard A; Tidswell T; Holder DS
    Physiol Meas; 2001 Feb; 22(1):55-64. PubMed ID: 11236890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive techniques in electrical impedance tomography reconstruction.
    Li T; Isaacson D; Newell JC; Saulnier GJ
    Physiol Meas; 2014 Jun; 35(6):1111-24. PubMed ID: 24845260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one step image reconstruction algorithm for electrical impedance tomography in three dimensions.
    Le Hyaric A; Pidcock MK
    Physiol Meas; 2000 Feb; 21(1):95-8. PubMed ID: 10720004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive mesh refinement techniques for 3-D skin electrode modeling.
    Sawicki B; Okoniewski M
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):528-33. PubMed ID: 19789105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some boundary problems in electrical impedance tomography.
    Pidcock M; Ciulli S; Ispas S
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A91-6. PubMed ID: 9001607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical solution to the three-dimensional electrical forward problem for an elliptical cylinder.
    Kleinermann F; Avis NJ; Alhargan FA
    Physiol Meas; 2002 Feb; 23(1):141-7. PubMed ID: 11876227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional image reconstruction for electrical impedance tomography.
    Kleinermann F; Avis NJ; Judah SK; Barber DC
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A77-83. PubMed ID: 9001605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GREIT: a unified approach to 2D linear EIT reconstruction of lung images.
    Adler A; Arnold JH; Bayford R; Borsic A; Brown B; Dixon P; Faes TJ; Frerichs I; Gagnon H; Gärber Y; Grychtol B; Hahn G; Lionheart WR; Malik A; Patterson RP; Stocks J; Tizzard A; Weiler N; Wolf GK
    Physiol Meas; 2009 Jun; 30(6):S35-55. PubMed ID: 19491438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithms for parametric images in MEIT systems.
    Casas O; Bragós R; Riu PJ; Rosell J
    Physiol Meas; 2000 Feb; 21(1):35-43. PubMed ID: 10719997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the positional accuracy of EIT images of the head using a Lagrange multiplier reconstruction algorithm with diametric excitation.
    Bayford RH; Boone KG; Hanquan Y; Holder DS
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A49-57. PubMed ID: 9001602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A MATLAB package for the EIDORS project to reconstruct two-dimensional EIT images.
    Vauhkonen M; Lionheart WR; Heikkinen LM; Vauhkonen PJ; Kaipio JP
    Physiol Meas; 2001 Feb; 22(1):107-11. PubMed ID: 11236871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D reconstruction in electrical impedance imaging using a direct sensitivity matrix approach.
    Morucci JP; Granié M; Lei M; Chabert M; Marsili PM
    Physiol Meas; 1995 Aug; 16(3 Suppl A):A123-8. PubMed ID: 8528110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a 3D reconstruction algorithm for EIT of human brain function in a realistic head-shaped tank.
    Tidswell AT; Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2001 Feb; 22(1):177-85. PubMed ID: 11236878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental validation of a novel reconstruction algorithm for electrical impedance tomography based on backprojection of Lagrange multipliers.
    Bayford R; Hanquan Y; Boone K; Holder DS
    Physiol Meas; 1995 Aug; 16(3 Suppl A):A237-47. PubMed ID: 8528121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity matrix and reconstruction algorithm for EIT assuming axial uniformity.
    Jerbi K; Lionheart WR; Vauhkonen PJ; Vauhkonen M
    Physiol Meas; 2000 Feb; 21(1):61-6. PubMed ID: 10720000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.