BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11236908)

  • 1. Role of fatty acids in the recovery of cardiac function during resuscitation from hemorrhagic shock.
    Custalow CB; Watts JA; Thornton L; O'Malley P; Barbee RW; Grattan RM; Lopaschuk GD; Kline JA
    Shock; 2001 Mar; 15(3):231-8. PubMed ID: 11236908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate improves cardiac efficiency after hemorrhagic shock.
    Kline JA; Thornton LR; Lopaschuk GD; Barbee RW; Watts JA
    Shock; 2000 Aug; 14(2):215-21. PubMed ID: 10947169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts.
    Liu Q; Clanachan AS; Lopaschuk GD
    Am J Physiol; 1998 Sep; 275(3):E392-9. PubMed ID: 9725804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart function after severe hemorrhagic shock.
    Kline JA; Thornton LR; Lopaschuk GD; Barbee RW; Watts JA
    Shock; 1999 Dec; 12(6):454-61. PubMed ID: 10588514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart.
    Broderick TL; Quinney HA; Lopaschuk GD
    J Biol Chem; 1992 Feb; 267(6):3758-63. PubMed ID: 1740427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart.
    Schönekess BO; Brindley PG; Lopaschuk GD
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts.
    Saddik M; Lopaschuk GD
    J Biol Chem; 1991 May; 266(13):8162-70. PubMed ID: 1902472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation.
    Liu Q; Docherty JC; Rendell JC; Clanachan AS; Lopaschuk GD
    J Am Coll Cardiol; 2002 Feb; 39(4):718-25. PubMed ID: 11849874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triacylglycerol turnover in isolated working hearts of acutely diabetic rats.
    Saddik M; Lopaschuk GD
    Can J Physiol Pharmacol; 1994 Oct; 72(10):1110-9. PubMed ID: 7882174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism.
    Collins-Nakai RL; Noseworthy D; Lopaschuk GD
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1862-71. PubMed ID: 7977816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of pyruvate dehydrogenase improves heart function and metabolism after hemorrhagic shock.
    Kline JA; Maiorano PC; Schroeder JD; Grattan RM; Vary TC; Watts JA
    J Mol Cell Cardiol; 1997 Sep; 29(9):2465-74. PubMed ID: 9299369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency.
    Folmes CD; Sowah D; Clanachan AS; Lopaschuk GD
    J Mol Cell Cardiol; 2009 Jul; 47(1):142-8. PubMed ID: 19303418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acylcarnitine accumulation does not correlate with reperfusion recovery in palmitate-perfused rat hearts.
    Madden MC; Wołkowicz PE; Pohost GM; McMillin JB; Pike MM
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2505-12. PubMed ID: 7611501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regression of cardiac hypertrophy normalizes glucose metabolism and left ventricular function during reperfusion.
    Wambolt RB; Henning SL; English DR; Bondy GP; Allard MF
    J Mol Cell Cardiol; 1997 Mar; 29(3):939-48. PubMed ID: 9152855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High levels of fatty acids increase contractile function of neonatal rabbit hearts during reperfusion following ischemia.
    Ito M; Jaswal JS; Lam VH; Oka T; Zhang L; Beker DL; Lopaschuk GD; Rebeyka IM
    Am J Physiol Heart Circ Physiol; 2010 May; 298(5):H1426-37. PubMed ID: 20154256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of vanadate on glycolysis, intracellular sodium, and pH in perfused rat hearts.
    Geraldes CF; Castro MM; Sherry AD; Ramasamy R
    Mol Cell Biochem; 1997 May; 170(1-2):53-63. PubMed ID: 9144318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitate oxidation by isolated working fetal and newborn pig hearts.
    Werner JC; Sicard RE; Schuler HG
    Am J Physiol; 1989 Feb; 256(2 Pt 1):E315-21. PubMed ID: 2919670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demand-induced ischemia in volume expanded isolated rat heart; the effect of dichloroacetate and trimetazidine.
    Skierczynska A; Beresewicz A
    J Physiol Pharmacol; 2010 Apr; 61(2):153-62. PubMed ID: 20436215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover.
    O'Donnell JM; Fields AD; Sorokina N; Lewandowski ED
    J Mol Cell Cardiol; 2008 Feb; 44(2):315-22. PubMed ID: 18155232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart.
    Schönekess BO; Allard MF; Henning SL; Wambolt RB; Lopaschuk GD
    Circ Res; 1997 Oct; 81(4):540-9. PubMed ID: 9314835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.