These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 11237045)
1. The heating phenomenon produced by an ultrasonic fountain. Li H; Li Y; Li Z Ultrason Sonochem; 1997 Apr; 4(2):217-8. PubMed ID: 11237045 [TBL] [Abstract][Full Text] [Related]
2. Experimental characterisation of the thermal behaviour of different materials submitted to ultrasound in an ultrasonic fountain. Tingaud F; Ferrouillat S; Colasson S; Bontemps A; Bulliard-Sauret O Ultrason Sonochem; 2013 Jul; 20(4):1046-53. PubMed ID: 23422092 [TBL] [Abstract][Full Text] [Related]
3. Simulation of the formation and characteristics of ultrasonic fountain. Xu Z; Yasuda K; Liu X Ultrason Sonochem; 2016 Sep; 32():241-246. PubMed ID: 27150767 [TBL] [Abstract][Full Text] [Related]
5. Albuterol delivery by 4 different nebulizers placed in 4 different positions in a pediatric ventilator in vitro model. Berlinski A; Willis JR Respir Care; 2013 Jul; 58(7):1124-33. PubMed ID: 23107173 [TBL] [Abstract][Full Text] [Related]
6. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization. Yano YF; Douguchi J; Kumagai A; Iijima T; Tomida Y; Miyamoto T; Matsuura K J Chem Phys; 2006 Nov; 125(17):174705. PubMed ID: 17100459 [TBL] [Abstract][Full Text] [Related]
8. Observations of water cavitation intensity under practical ultrasonic cleaning conditions. Niemczewski B Ultrason Sonochem; 2007 Jan; 14(1):13-8. PubMed ID: 16455284 [TBL] [Abstract][Full Text] [Related]
9. Periodicity in ultrasonic atomization involving beads-fountain oscillations and mist generation: Effects of driving frequency. Wang X; Mori Y; Tsuchiya K Ultrason Sonochem; 2022 May; 86():105997. PubMed ID: 35417794 [TBL] [Abstract][Full Text] [Related]
10. The comparison of ultrasonic effects in different metal melts. Kang J; Zhang X; Wang S; Ma J; Huang T Ultrasonics; 2015 Mar; 57():11-7. PubMed ID: 25435493 [TBL] [Abstract][Full Text] [Related]
11. Impact of time on ultrasonic cavitation peening via detection of surface plastic deformation. Bai F; Saalbach KA; Wang L; Wang X; Twiefel J Ultrasonics; 2018 Mar; 84():350-355. PubMed ID: 29232591 [TBL] [Abstract][Full Text] [Related]
12. Comparison of ultrasonic distillation to sparging of liquid mixtures. Jung HY; Park HJ; Calo JM; Diebold GJ Anal Chem; 2010 Dec; 82(24):10090-4. PubMed ID: 21073163 [TBL] [Abstract][Full Text] [Related]
13. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution. Ye L; Zhu X; Liu Y Ultrason Sonochem; 2019 Dec; 59():104744. PubMed ID: 31473426 [TBL] [Abstract][Full Text] [Related]
14. Cavitation dynamics in water at elevated temperatures and in liquid nitrogen at an ultrasonic horn tip. Petkovšek M; Dular M Ultrason Sonochem; 2019 Nov; 58():104652. PubMed ID: 31450287 [TBL] [Abstract][Full Text] [Related]
15. Effect of nebulizer configuration on delivery of aerosolized tobramycin. O'Riordan TG; Amram JC J Aerosol Med; 1997; 10(1):13-23. PubMed ID: 10166359 [TBL] [Abstract][Full Text] [Related]
16. Study of the technological parameters of ultrasonic nebulization. Flament MP; Leterme P; Gayot A Drug Dev Ind Pharm; 2001 Aug; 27(7):643-9. PubMed ID: 11694011 [TBL] [Abstract][Full Text] [Related]
17. Temperature changes during ultrasonic irrigation with different inserts and modes of activation. Zeltner M; Peters OA; Paqué F J Endod; 2009 Apr; 35(4):573-7. PubMed ID: 19345808 [TBL] [Abstract][Full Text] [Related]
18. Capability evaluation of ultrasonic cavitation peening at different standoff distances. Bai F; Saalbach KA; Long Y; Twiefel J; Wallaschek J Ultrasonics; 2018 Mar; 84():38-44. PubMed ID: 29073486 [TBL] [Abstract][Full Text] [Related]
19. High frequency ultrasonic-assisted CO2 absorption in a high pressure water batch system. Tay WH; Lau KK; Shariff AM Ultrason Sonochem; 2016 Nov; 33():190-196. PubMed ID: 27245970 [TBL] [Abstract][Full Text] [Related]