These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 11237201)
1. Regulation of intestinal glucose transport by tea catechins. Shimizu M; Kobayashi Y; Suzuki M; Satsu H; Miyamoto Y Biofactors; 2000; 13(1-4):61-5. PubMed ID: 11237201 [TBL] [Abstract][Full Text] [Related]
2. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. Kobayashi Y; Suzuki M; Satsu H; Arai S; Hara Y; Suzuki K; Miyamoto Y; Shimizu M J Agric Food Chem; 2000 Nov; 48(11):5618-23. PubMed ID: 11087528 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. Ni D; Ai Z; Munoz-Sandoval D; Suresh R; Ellis PR; Yuqiong C; Sharp PA; Butterworth PJ; Yu Z; Corpe CP FASEB J; 2020 Aug; 34(8):9995-10010. PubMed ID: 32564472 [TBL] [Abstract][Full Text] [Related]
4. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers. Ai Z; Liu S; Qu F; Zhang H; Chen Y; Ni D Molecules; 2019 Mar; 24(6):. PubMed ID: 30917581 [TBL] [Abstract][Full Text] [Related]
5. Hypoglycemic effect of soluble polysaccharide and catechins from green tea on inhibiting intestinal transport of glucose. Lee YE; Yoo SH; Chung JO; Park MY; Hong YD; Park SH; Park TS; Shim SM J Sci Food Agric; 2020 Aug; 100(10):3979-3986. PubMed ID: 32342987 [TBL] [Abstract][Full Text] [Related]
6. Suppressive effect of nobiletin and epicatechin gallate on fructose uptake in human intestinal epithelial Caco-2 cells. Satsu H; Awara S; Unno T; Shimizu M Biosci Biotechnol Biochem; 2018 Apr; 82(4):636-646. PubMed ID: 29191128 [TBL] [Abstract][Full Text] [Related]
7. Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechins. Chung JH; Kim S; Lee SJ; Chung JO; Oh YJ; Shim SM J Food Sci; 2013 May; 78(5):C685-90. PubMed ID: 23551173 [TBL] [Abstract][Full Text] [Related]
8. Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers. Konishi Y; Kobayashi S; Shimizu M J Agric Food Chem; 2003 Dec; 51(25):7296-302. PubMed ID: 14640574 [TBL] [Abstract][Full Text] [Related]
9. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. Snoussi C; Ducroc R; Hamdaoui MH; Dhaouadi K; Abaidi H; Cluzeaud F; Nazaret C; Le Gall M; Bado A J Nutr Biochem; 2014 May; 25(5):557-64. PubMed ID: 24656388 [TBL] [Abstract][Full Text] [Related]
10. Effect of excretory-secretory products of Giardia lamblia on glucose and phenylalanine transport in the small intestine of Swiss albino mice. Samra HK; Ganguly NK; Garg UC; Goyal J; Mahajan RC Biochem Int; 1988 Nov; 17(5):801-12. PubMed ID: 3254161 [TBL] [Abstract][Full Text] [Related]
11. Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Ikeda I; Imasato Y; Sasaki E; Nakayama M; Nagao H; Takeo T; Yayabe F; Sugano M Biochim Biophys Acta; 1992 Jul; 1127(2):141-6. PubMed ID: 1643098 [TBL] [Abstract][Full Text] [Related]
12. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. Zhang L; Zheng Y; Chow MS; Zuo Z Int J Pharm; 2004 Dec; 287(1-2):1-12. PubMed ID: 15541906 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of folic acid uptake by catechins and tea extracts in Caco-2 cells. Alemdaroglu NC; Wolffram S; Boissel JP; Closs E; Spahn-Langguth H; Langguth P Planta Med; 2007 Jan; 73(1):27-32. PubMed ID: 17117344 [TBL] [Abstract][Full Text] [Related]
14. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. Ikeda I; Kobayashi M; Hamada T; Tsuda K; Goto H; Imaizumi K; Nozawa A; Sugimoto A; Kakuda T J Agric Food Chem; 2003 Dec; 51(25):7303-7. PubMed ID: 14640575 [TBL] [Abstract][Full Text] [Related]
15. Interaction of flavonoids and intestinal facilitated glucose transporters. Chen CH; Hsu HJ; Huang YJ; Lin CJ Planta Med; 2007 Apr; 73(4):348-54. PubMed ID: 17511059 [TBL] [Abstract][Full Text] [Related]
16. Influence of gallate and pyrogallol moieties on the intestinal absorption of (-)-epicatechin and (-)-epicatechin gallate. Tagashira T; Choshi T; Hibino S; Kamishikiryou J; Sugihara N J Food Sci; 2012 Oct; 77(10):H208-15. PubMed ID: 22938538 [TBL] [Abstract][Full Text] [Related]
17. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes. Ueda M; Furuyashiki T; Yamada K; Aoki Y; Sakane I; Fukuda I; Yoshida K; Ashida H Food Funct; 2010 Nov; 1(2):167-73. PubMed ID: 21776468 [TBL] [Abstract][Full Text] [Related]
18. Ambivalent role of gallated catechins in glucose tolerance in humans: a novel insight into non-absorbable gallated catechin-derived inhibitors of glucose absorption. Park JH; Jin JY; Baek WK; Park SH; Sung HY; Kim YK; Lee J; Song DK J Physiol Pharmacol; 2009 Dec; 60(4):101-9. PubMed ID: 20065503 [TBL] [Abstract][Full Text] [Related]
19. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells. Ma Q; Kim EY; Lindsay EA; Han O J Food Sci; 2011; 76(5):H143-50. PubMed ID: 22417433 [TBL] [Abstract][Full Text] [Related]
20. Action of robenidine on the intestinal transport and digestion of nutrients in rabbit. Sorribas V; Arruebo MP; Alvarado F; Alcalde AI Eur J Pharmacol; 1993 Aug; 248(2):137-44. PubMed ID: 8223959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]