These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 11237367)
1. A biologically plausible model of associative memory which uses disinhibition rather than long-term potentiation. Vogel D Brain Cogn; 2001 Mar; 45(2):212-28. PubMed ID: 11237367 [TBL] [Abstract][Full Text] [Related]
2. A neural network model of memory and higher cognitive functions. Vogel DD Int J Psychophysiol; 2005 Jan; 55(1):3-21. PubMed ID: 15598512 [TBL] [Abstract][Full Text] [Related]
3. Long-term potentiation as a substrate for memory: evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning. Goosens KA; Maren S Hippocampus; 2002; 12(5):592-9. PubMed ID: 12440575 [TBL] [Abstract][Full Text] [Related]
4. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity]. Le Roux N; Amar M; Fossier P J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512 [TBL] [Abstract][Full Text] [Related]
5. Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Lamsa K; Heeroma JH; Kullmann DM Nat Neurosci; 2005 Jul; 8(7):916-24. PubMed ID: 15937481 [TBL] [Abstract][Full Text] [Related]
6. Diabetes mellitus concomitantly facilitates the induction of long-term depression and inhibits that of long-term potentiation in hippocampus. Artola A; Kamal A; Ramakers GM; Biessels GJ; Gispen WH Eur J Neurosci; 2005 Jul; 22(1):169-78. PubMed ID: 16029206 [TBL] [Abstract][Full Text] [Related]
7. Learning in a simple motor system. Broussard DM; Kassardjian CD Learn Mem; 2004; 11(2):127-36. PubMed ID: 15054127 [TBL] [Abstract][Full Text] [Related]
8. Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala. Schroeder BW; Shinnick-Gallagher P Eur J Neurosci; 2004 Jul; 20(2):549-56. PubMed ID: 15233764 [TBL] [Abstract][Full Text] [Related]
14. Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory. Di Filippo M; Picconi B; Tantucci M; Ghiglieri V; Bagetta V; Sgobio C; Tozzi A; Parnetti L; Calabresi P Behav Brain Res; 2009 Apr; 199(1):108-18. PubMed ID: 18948145 [TBL] [Abstract][Full Text] [Related]
15. A model of cortical associative memory based on a horizontal network of connected columns. Fransén E; Lansner A Network; 1998 May; 9(2):235-64. PubMed ID: 9861988 [TBL] [Abstract][Full Text] [Related]
17. Ubiquitous plasticity and memory storage. Kim SJ; Linden DJ Neuron; 2007 Nov; 56(4):582-92. PubMed ID: 18031678 [TBL] [Abstract][Full Text] [Related]
18. Neuropsin is essential for early processes of memory acquisition and Schaffer collateral long-term potentiation in adult mouse hippocampus in vivo. Tamura H; Ishikawa Y; Hino N; Maeda M; Yoshida S; Kaku S; Shiosaka S J Physiol; 2006 Feb; 570(Pt 3):541-51. PubMed ID: 16308352 [TBL] [Abstract][Full Text] [Related]
19. Associative learning and long-term potentiation: cellular mechanisms compared. Disterhoft JF; De Jonge M Int J Neurol; 1987-1988; 21-22():172-83. PubMed ID: 2980687 [TBL] [Abstract][Full Text] [Related]
20. Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. Kunec S; Hasselmo ME; Kopell N J Neurophysiol; 2005 Jul; 94(1):70-82. PubMed ID: 15728768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]