BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 11237597)

  • 41. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 A resolution: implication for stereospecific substrate binding and catalysis.
    Yamashita A; Kato H; Wakatsuki S; Tomizaki T; Nakatsu T; Nakajima K; Hashimoto T; Yamada Y; Oda J
    Biochemistry; 1999 Jun; 38(24):7630-7. PubMed ID: 10387002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of cis-biphenyl-2,3-dihydrodiol-2,3-dehydrogenase from a PCB degrader at 2.0 A resolution.
    Hülsmeyer M; Hecht HJ; Niefind K; Hofer B; Eltis LD; Timmis KN; Schomburg D
    Protein Sci; 1998 Jun; 7(6):1286-93. PubMed ID: 9655331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.
    González-Segura L; Rudiño-Piñera E; Muñoz-Clares RA; Horjales E
    J Mol Biol; 2009 Jan; 385(2):542-57. PubMed ID: 19013472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crystal structures of the carboxyl terminal domain of rat 10-formyltetrahydrofolate dehydrogenase: implications for the catalytic mechanism of aldehyde dehydrogenases.
    Tsybovsky Y; Donato H; Krupenko NI; Davies C; Krupenko SA
    Biochemistry; 2007 Mar; 46(11):2917-29. PubMed ID: 17302434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase from Mycobacterium tuberculosis in complex with NADP(+).
    Cherney LT; Cherney MM; Garen CR; Niu C; Moradian F; James MN
    J Mol Biol; 2007 Apr; 367(5):1357-69. PubMed ID: 17316682
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A new branch in the family: structure of aspartate-beta-semialdehyde dehydrogenase from Methanococcus jannaschii.
    Faehnle CR; Ohren JF; Viola RE
    J Mol Biol; 2005 Nov; 353(5):1055-68. PubMed ID: 16225889
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structure of the dimeric phosphoenolpyruvate carboxykinase (PEPCK) from Trypanosoma cruzi at 2 A resolution.
    Trapani S; Linss J; Goldenberg S; Fischer H; Craievich AF; Oliva G
    J Mol Biol; 2001 Nov; 313(5):1059-72. PubMed ID: 11700062
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1.
    He W; Wang Y; Liu W; Zhou CZ
    BMC Struct Biol; 2007 Jun; 7():38. PubMed ID: 17570834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 1.6 angstroms structure of an NAD+-dependent quinate dehydrogenase from Corynebacterium glutamicum.
    Schoepe J; Niefind K; Schomburg D
    Acta Crystallogr D Biol Crystallogr; 2008 Jul; D64(Pt 7):803-9. PubMed ID: 18566515
    [TBL] [Abstract][Full Text] [Related]  

  • 51. X-ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds.
    Kamitori S; Iguchi A; Ohtaki A; Yamada M; Kita K
    J Mol Biol; 2005 Sep; 352(3):551-8. PubMed ID: 16095619
    [TBL] [Abstract][Full Text] [Related]  

  • 52. D-3-hydroxybutyrate dehydrogenase from Pseudomonas fragi: molecular cloning of the enzyme gene and crystal structure of the enzyme.
    Ito K; Nakajima Y; Ichihara E; Ogawa K; Katayama N; Nakashima K; Yoshimoto T
    J Mol Biol; 2006 Jan; 355(4):722-33. PubMed ID: 16325199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes.
    Kim K; Kim HJ; Oh DK; Cha SS; Rhee S
    J Mol Biol; 2006 Sep; 361(5):920-31. PubMed ID: 16876192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The crystal structure of l-sorbose reductase from Gluconobacter frateurii complexed with NADPH and l-sorbose.
    Kubota K; Nagata K; Okai M; Miyazono K; Soemphol W; Ohtsuka J; Yamamura A; Saichana N; Toyama H; Matsushita K; Tanokura M
    J Mol Biol; 2011 Apr; 407(4):543-55. PubMed ID: 21277857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structure of Saccharomyces cerevisiae 3'-phosphoadenosine-5'-phosphosulfate reductase complexed with adenosine 3',5'-bisphosphate.
    Yu Z; Lemongello D; Segel IH; Fisher AJ
    Biochemistry; 2008 Dec; 47(48):12777-86. PubMed ID: 18991405
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of a truncated mutant of glucose-fructose oxidoreductase shows that an N-terminal arm controls tetramer formation.
    Lott JS; Halbig D; Baker HM; Hardman MJ; Sprenger GA; Baker EN
    J Mol Biol; 2000 Dec; 304(4):575-84. PubMed ID: 11099381
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+.
    Hermoso JA; Mayoral T; Faro M; Gómez-Moreno C; Sanz-Aparicio J; Medina M
    J Mol Biol; 2002 Jun; 319(5):1133-42. PubMed ID: 12079352
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The crystal structure of the bifunctional deaminase/reductase RibD of the riboflavin biosynthetic pathway in Escherichia coli: implications for the reductive mechanism.
    Stenmark P; Moche M; Gurmu D; Nordlund P
    J Mol Biol; 2007 Oct; 373(1):48-64. PubMed ID: 17765262
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A 2.8 A resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei: comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues.
    Phillips C; Dohnalek J; Gover S; Barrett MP; Adams MJ
    J Mol Biol; 1998 Sep; 282(3):667-81. PubMed ID: 9737929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure and catalytic mechanism of leucoanthocyanidin reductase from Vitis vinifera.
    Maugé C; Granier T; d'Estaintot BL; Gargouri M; Manigand C; Schmitter JM; Chaudière J; Gallois B
    J Mol Biol; 2010 Apr; 397(4):1079-91. PubMed ID: 20138891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.