These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11237632)

  • 1. NMR paramagnetic relaxation enhancement: test of the controlling influence of zfs rhombicity for S = 1.
    Miller JC; Lohr LL; Sharp RR
    J Magn Reson; 2001 Feb; 148(2):267-76. PubMed ID: 11237632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron spin relaxation due to reorientation of a permanent zero field splitting tensor.
    Schaefle N; Sharp R
    J Chem Phys; 2004 Sep; 121(11):5387-94. PubMed ID: 15352832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of paramagnetic NMR relaxation produced by Mn(II): role of orthorhombic and fourth-order zero field splitting terms.
    Sharp R
    J Chem Phys; 2008 Oct; 129(14):144307. PubMed ID: 19045147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed-form expressions for level-averaged electron spin relaxation times outside the Zeeman limit: application to paramagnetic NMR relaxation.
    Sharp R
    J Magn Reson; 2002 Feb; 154(2):269-79. PubMed ID: 11846584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR paramagnetic relaxation due to the S=5/2 complex, Fe(III)-(tetra-p-sulfonatophenyl)porphyrin: central role of the tetragonal fourth-order zero-field splitting interaction.
    Schaefle N; Sharp R
    J Chem Phys; 2005 May; 122(18):184501. PubMed ID: 15918723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR paramagnetic relaxation of the spin 2 complex Mn(III)TSPP: a unique mechanism.
    Schaefle N; Sharp R
    J Phys Chem A; 2005 Apr; 109(15):3267-75. PubMed ID: 16833659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four complementary theoretical approaches for the analysis of NMR paramagnetic relaxation.
    Schaefle N; Sharp R
    J Magn Reson; 2005 Oct; 176(2):160-70. PubMed ID: 16009586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow-motion theory of nuclear spin relaxation in paramagnetic low-symmetry complexes: A generalization to high electron spin.
    Nilsson T; Kowalewski J
    J Magn Reson; 2000 Oct; 146(2):345-58. PubMed ID: 11001850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paramagnetic proton nuclear spin relaxation theory of low-symmetry complexes for electron spin quantum number S = 52.
    Strandberg E; Westlund P
    J Magn Reson; 1999 Apr; 137(2):333-44. PubMed ID: 10089167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear and electron spin relaxation in paramagnetic complexes in solution: effects of the quantum nature of molecular vibrations.
    Kruk D; Kowalewski J; Westlund PO
    J Chem Phys; 2004 Aug; 121(5):2215-27. PubMed ID: 15260776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR-paramagnetic relaxation due to the high-spin d3 electron configuration: Cr(III)-TSPP.
    Schaefle N; Sharp R
    J Phys Chem A; 2005 Apr; 109(15):3276-84. PubMed ID: 16833660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Gd(III)-based magnetic resonance imaging contrast agents: static and transient zero-field splitting contributions to the electronic relaxation and their impact on relaxivity.
    Benmelouka M; Borel A; Moriggi L; Helm L; Merbach AE
    J Phys Chem B; 2007 Feb; 111(4):832-40. PubMed ID: 17249827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminocarboxylate complexes of vanadium(III): Electronic structure investigation by high-frequency and -field electron paramagnetic resonance spectroscopy.
    Telser J; Wu CC; Chen KY; Hsu HF; Smirnov D; Ozarowski A; Krzystek J
    J Inorg Biochem; 2009 Apr; 103(4):487-95. PubMed ID: 19269689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule magnets: high-field electron paramagnetic resonance evaluation of the single-ion zero-field interaction in a Zn(II)3Ni(II) complex.
    Yang EC; Kirman C; Lawrence J; Zakharov LN; Rheingold AL; Hill S; Hendrickson DN
    Inorg Chem; 2005 May; 44(11):3827-36. PubMed ID: 15907107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.
    Lawrence J; Yang EC; Hendrickson DN; Hill S
    Phys Chem Chem Phys; 2009 Aug; 11(31):6743-9. PubMed ID: 19639148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic couplings in the chemical shift of paramagnetic NMR.
    Vaara J; Rouf SA; Mareš J
    J Chem Theory Comput; 2015 Oct; 11(10):4840-9. PubMed ID: 26574272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic Liouville equation treatment of the electron paramagnetic resonance line shape of an S-state ion in solution.
    Borel A; Clarkson RB; Belford RL
    J Chem Phys; 2007 Feb; 126(5):054510. PubMed ID: 17302488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical spin relaxation and molecular dynamics simulation study of the Gd(H2O)9(3+) complex.
    Lindgren M; Laaksonen A; Westlund PO
    Phys Chem Chem Phys; 2009 Nov; 11(44):10368-76. PubMed ID: 19890521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The viscosity and temperature dependence of (1)H T(1)-NMRD of the Gd(H(2)O)(8)(3+) complex.
    Zhou X; Westlund PO
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):335-42. PubMed ID: 16257734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mononuclear nickel(III) and nickel(II) thiolate complexes with intramolecular S-H proton interacting with both sulfur and nickel: relevance to the [NiFe]/[NiFeSe] hydrogenases.
    Lee CM; Chen CH; Ke SC; Lee GH; Liaw WF
    J Am Chem Soc; 2004 Jul; 126(27):8406-12. PubMed ID: 15237996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.