These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 11237724)
1. Nitric oxide prevents gamma-radiation-induced cell cycle arrest by impairing p53 function in MCF-7 cells. Chazotte-Aubert L; Pluquet O; Hainaut P; Ohshima H Biochem Biophys Res Commun; 2001 Mar; 281(3):766-71. PubMed ID: 11237724 [TBL] [Abstract][Full Text] [Related]
2. Modulation of nitric oxide-evoked apoptosis by the p53-downstream target p21(WAF1/CIP1). Yang F; von Knethen A; Brüne B J Leukoc Biol; 2000 Dec; 68(6):916-22. PubMed ID: 11129661 [TBL] [Abstract][Full Text] [Related]
3. Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Calmels S; Hainaut P; Ohshima H Cancer Res; 1997 Aug; 57(16):3365-9. PubMed ID: 9269997 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide nitrates tyrosine residues of tumor-suppressor p53 protein in MCF-7 cells. Chazotte-Aubert L; Hainaut P; Ohshima H Biochem Biophys Res Commun; 2000 Jan; 267(2):609-13. PubMed ID: 10631110 [TBL] [Abstract][Full Text] [Related]
5. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Huang S; Liu LN; Hosoi H; Dilling MB; Shikata T; Houghton PJ Cancer Res; 2001 Apr; 61(8):3373-81. PubMed ID: 11309295 [TBL] [Abstract][Full Text] [Related]
6. Intracellular localization of p53 tumor suppressor protein in gamma-irradiated cells is cell cycle regulated and determined by the nucleus. Komarova EA; Zelnick CR; Chin D; Zeremski M; Gleiberman AS; Bacus SS; Gudkov AV Cancer Res; 1997 Dec; 57(23):5217-20. PubMed ID: 9393737 [TBL] [Abstract][Full Text] [Related]
7. Perifosine, a novel alkylphospholipid, induces p21(WAF1) expression in squamous carcinoma cells through a p53-independent pathway, leading to loss in cyclin-dependent kinase activity and cell cycle arrest. Patel V; Lahusen T; Sy T; Sausville EA; Gutkind JS; Senderowicz AM Cancer Res; 2002 Mar; 62(5):1401-9. PubMed ID: 11888912 [TBL] [Abstract][Full Text] [Related]
8. Role of p53 in G2/M cell cycle arrest and apoptosis in response to gamma-irradiation in ovarian carcinoma cell lines. Concin N; Stimpfl M; Zeillinger C; Wolff U; Hefler L; Sedlak J; Leodolter S; Zeillinger R Int J Oncol; 2003 Jan; 22(1):51-7. PubMed ID: 12469184 [TBL] [Abstract][Full Text] [Related]
9. NS1- and minute virus of mice-induced cell cycle arrest: involvement of p53 and p21(cip1). Op De Beeck A; Sobczak-Thepot J; Sirma H; Bourgain F; Brechot C; Caillet-Fauquet P J Virol; 2001 Nov; 75(22):11071-8. PubMed ID: 11602746 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Ling YH; Liebes L; Jiang JD; Holland JF; Elliott PJ; Adams J; Muggia FM; Perez-Soler R Clin Cancer Res; 2003 Mar; 9(3):1145-54. PubMed ID: 12631620 [TBL] [Abstract][Full Text] [Related]
11. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544 [TBL] [Abstract][Full Text] [Related]
12. Influence of p53 and caspase 3 activity on cell death and senescence in response to methotrexate in the breast tumor cell. Hattangadi DK; DeMasters GA; Walker TD; Jones KR; Di X; Newsham IF; Gewirtz DA Biochem Pharmacol; 2004 Nov; 68(9):1699-708. PubMed ID: 15450935 [TBL] [Abstract][Full Text] [Related]
13. A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function. Kokontis JM; Wagner AJ; O'Leary M; Liao S; Hay N Oncogene; 2001 Feb; 20(6):659-68. PubMed ID: 11313999 [TBL] [Abstract][Full Text] [Related]
14. P53-mediated cell cycle arrest and apoptosis through a caspase-3- independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells. Cui Q; Yu JH; Wu JN; Tashiro S; Onodera S; Minami M; Ikejima T Acta Pharmacol Sin; 2007 Jul; 28(7):1057-66. PubMed ID: 17588343 [TBL] [Abstract][Full Text] [Related]
15. Relationship between radiation-induced G1 phase arrest and p53 function in human tumor cells. Nagasawa H; Li CY; Maki CG; Imrich AC; Little JB Cancer Res; 1995 May; 55(9):1842-6. PubMed ID: 7728750 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of RFT induces G1-S arrest and apoptosis via p53/p21(Waf1) pathway in glioma cell. Kano H; Arakawa Y; Takahashi JA; Nozaki K; Kawabata Y; Takatsuka K; Kageyama R; Ueba T; Hashimoto N Biochem Biophys Res Commun; 2004 May; 317(3):902-8. PubMed ID: 15081425 [TBL] [Abstract][Full Text] [Related]
17. Induction of p21CIP/WAF-1 and G2 arrest by ionizing irradiation impedes caspase-3-mediated apoptosis in human carcinoma cells. Wendt J; Radetzki S; von Haefen C; Hemmati PG; Güner D; Schulze-Osthoff K; Dörken B; Daniel PT Oncogene; 2006 Feb; 25(7):972-80. PubMed ID: 16331277 [TBL] [Abstract][Full Text] [Related]
18. Cell cycle and apoptosis alteration of human hepatocarcinoma cells by subclinical-dose 12C6+-beam irradiation. Liu B; Zhang H; Xie Y; Hao J; Duan X; Zhou Q; Qiu R; Zhou G Eur J Gastroenterol Hepatol; 2007 Sep; 19(9):749-54. PubMed ID: 17700259 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Li JN; Gorospe M; Chrest FJ; Kumaravel TS; Evans MK; Han WF; Pizer ES Cancer Res; 2001 Feb; 61(4):1493-9. PubMed ID: 11245456 [TBL] [Abstract][Full Text] [Related]
20. Time-dependent changes in factors involved in the apoptotic process in human ovarian cancer cells as a response to cisplatin. Kolfschoten GM; Hulscher TM; Schrier SM; van Houten VM; Pinedo HM; Boven E Gynecol Oncol; 2002 Mar; 84(3):404-12. PubMed ID: 11855878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]